开学活动
搜索
    上传资料 赚现金

    福建省泉州市洛江区2021-2022学年中考数学全真模拟试题含解析

    福建省泉州市洛江区2021-2022学年中考数学全真模拟试题含解析第1页
    福建省泉州市洛江区2021-2022学年中考数学全真模拟试题含解析第2页
    福建省泉州市洛江区2021-2022学年中考数学全真模拟试题含解析第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省泉州市洛江区2021-2022学年中考数学全真模拟试题含解析

    展开

    这是一份福建省泉州市洛江区2021-2022学年中考数学全真模拟试题含解析,共28页。试卷主要包含了不等式组的解在数轴上表示为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H.∠CBE=∠BAD,有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△BEC=S△ADF.其中正确的有(  )

    A.1个 B.2个 C.3个 D.4个
    2.如图,将绕直角顶点顺时针旋转,得到,连接,若,则的度数是( )

    A. B. C. D.
    3.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是(  )
    A. B. C. D.
    4.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是(  )

    A.50° B.60° C.70° D.80°
    5.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为( )

    A.40° B.60° C.80° D.100°
    6.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )
    A. B. C. D.
    7.不等式组的解在数轴上表示为( )
    A. B. C. D.
    8.若3x>﹣3y,则下列不等式中一定成立的是 ( )
    A. B. C. D.
    9.如图,△ABC中,AB=2,AC=3,1<BC<5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE和正方形ACFG,则图中阴影部分的最大面积为(  )

    A.6 B.9 C.11 D.无法计算
    10.如图,已知两个全等的直角三角形纸片的直角边分别为、,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有( )

    A.3个; B.4个; C.5个; D.6个.
    11.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( )
    A.20% B.11% C.10% D.9.5%
    12.半径为的正六边形的边心距和面积分别是(  )
    A., B.,
    C., D.,
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.将6本相同厚度的书叠起来,它们的高度是9厘米.如果将这样相同厚度的书叠起来的高度是42厘米,那么这些书有_____本.
    14.计算:=_________ .
    15.如图,直线与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是______.

    16.已知⊙O1、⊙O2的半径分别为2和5,圆心距为d,若⊙O1与⊙O2相交,那么d的取值范围是_________.
    17.如图,正方形ABCD和正方形OEFG中, 点A和点F的坐标分别为 (3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.

    18.函数y=的自变量x的取值范围是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.
    (1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;
    (2)函数y=2x2-bx.
    ①若其不变长度为零,求b的值;
    ②若1≤b≤3,求其不变长度q的取值范围;
    (3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .

    20.(6分)计算.
    21.(6分)如图1,在四边形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转90°得到PQ.
    (1)如图2,过A点,D点作BC的垂线,垂足分别为M,N,求sinB的值;
    (2)若P是AB的中点,求点E所经过的路径弧EQ的长(结果保留π);
    (3)若点Q落在AB或AD边所在直线上,请直接写出BP的长.

    22.(8分)已知抛物线y=x2﹣(2m+1)x+m2+m,其中m是常数.
    (1)求证:不论m为何值,该抛物线与z轴一定有两个公共点;
    (2)若该抛物线的对称轴为直线x=,请求出该抛物线的顶点坐标.
    23.(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.

    24.(10分)如图,在四边形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,点E,F同时从B点出发,沿射线BC向右匀速移动,已知点F的移动速度是点E移动速度的2倍,以EF为一边在CB的上方作等边△EFG,设E点移动距离为x(0<x<6).
    (1)∠DCB=   度,当点G在四边形ABCD的边上时,x=   ;
    (2)在点E,F的移动过程中,点G始终在BD或BD的延长线上运动,求点G在线段BD的中点时x的值;
    (3)当2<x<6时,求△EFG与四边形ABCD重叠部分面积y与x之间的函数关系式,当x取何值时,y有最大值?并求出y的最大值.

    25.(10分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30°,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60°,试通过计算求出文峰塔的高度CD.(结果保留两位小数)

    26.(12分) “六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:

    (1)该校有_____个班级,补全条形统计图;
    (2)求该校各班留守儿童人数数据的平均数,众数与中位数;
    (3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.
    27.(12分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.例:如图①,在△ABC中,D为边BC的中点,AE⊥BC于E,则线段DE的长叫做边BC的中垂距.
    (1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是   ,推断的数学依据是   .
    (2)如图②,在△ABC中,∠B=15°,AB=3,BC=8,AD为边BC的中线,求边BC的中垂距.
    (3)如图③,在矩形ABCD中,AB=6,AD=1.点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC.求△ACF中边AF的中垂距.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据题意和图形,可以判断各小题中的结论是否成立,从而可以解答本题.
    【详解】
    ∵在△ABC中,AD和BE是高,
    ∴∠ADB=∠AEB=∠CEB=90°,
    ∵点F是AB的中点,
    ∴FD=AB,FE=AB,
    ∴FD=FE,①正确;
    ∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,
    ∴∠ABC=∠C,
    ∴AB=AC,
    ∵AD⊥BC,
    ∴BC=2CD,∠BAD=∠CAD=∠CBE,
    在△AEH和△BEC中, ,
    ∴△AEH≌△BEC(ASA),
    ∴AH=BC=2CD,②正确;
    ∵∠BAD=∠CBE,∠ADB=∠CEB,
    ∴△ABD∽△BCE,
    ∴,即BC•AD=AB•BE,
    ∵∠AEB=90°,AE=BE,
    ∴AB=BE
    BC•AD=BE•BE,
    ∴BC•AD=AE2;③正确;
    设AE=a,则AB=a,
    ∴CE=a﹣a,
    ∴=,
    即 ,
    ∵AF=AB,
    ∴ ,
    ∴S△BEC≠S△ADF,故④错误,
    故选:C.
    【点睛】
    本题考查相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    2、B
    【解析】
    根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,最后根据旋转的性质可得∠B=∠A′B′C.
    【详解】
    解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,
    ∴AC=A′C,
    ∴△ACA′是等腰直角三角形,
    ∴∠CAA′=45°,
    ∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,
    ∴∠B=∠A′B′C=65°.
    故选B.
    【点睛】
    本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
    3、D
    【解析】
    画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.
    【详解】
    画树状图如下:

    一共有20种情况,其中两个球中至少有一个红球的有14种情况,
    因此两个球中至少有一个红球的概率是:.
    故选:D.
    【点睛】
    此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
    4、B
    【解析】
    试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.
    由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.
    考点:旋转的性质.
    5、D
    【解析】
    根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
    【详解】
    解:∵l1∥l2,
    ∴∠3=∠1=60°,
    ∴∠2=∠A+∠3=40°+60°=100°.
    故选D.

    【点睛】
    本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.
    6、A
    【解析】
    根据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决.
    【详解】
    由题意可得,

    故选A.
    【点睛】
    本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
    7、C
    【解析】
    先解每一个不等式,再根据结果判断数轴表示的正确方法.
    【详解】
    解:由不等式①,得3x>5-2,解得x>1,
    由不等式②,得-2x≥1-5,解得x≤2,
    ∴数轴表示的正确方法为C.
    故选C.
    【点睛】
    考核知识点:解不等式组.
    8、A
    【解析】
    两边都除以3,得x>﹣y,两边都加y,得:x+y>0,
    故选A.
    9、B
    【解析】
    有旋转的性质得到CB=BE=BH′,推出C、B、H'在一直线上,且AB为△ACH'的中线,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时, S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到阴影部分面积之和为S△ABC的3倍,于是得到结论.
    【详解】
    把△IBE绕B顺时针旋转90°,使BI与AB重合,E旋转到H'的位置,
    ∵四边形BCDE为正方形,∠CBE=90°,CB=BE=BH′,
    ∴C、B、H'在一直线上,且AB为△ACH'的中线,
    ∴S△BEI=S△ABH′=S△ABC,
    同理:S△CDF=S△ABC,
    当∠BAC=90°时,
    S△ABC的面积最大,
    S△BEI=S△CDF=S△ABC最大,
    ∵∠ABC=∠CBG=∠ABI=90°,
    ∴∠GBE=90°,
    ∴S△GBI=S△ABC,
    所以阴影部分面积之和为S△ABC的3倍,
    又∵AB=2,AC=3,
    ∴图中阴影部分的最大面积为3× ×2×3=9,
    故选B.
    【点睛】
    本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是S△ABC的3 倍是解题的关键.
    10、B
    【解析】
    分析:直接利用轴对称图形的性质进而分析得出答案.
    详解:如图所示:将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有4个.

    故选B.
    点睛:本题主要考查了全等三角形的性质和轴对称图形,正确把握轴对称图形的性质是解题的关键.
    11、C
    【解析】
    设二,三月份平均每月降价的百分率为,则二月份为,三月份为,然后再依据第三个月售价为1,列出方程求解即可.
    【详解】
    解:设二,三月份平均每月降价的百分率为.
    根据题意,得=1.
    解得,(不合题意,舍去).
    答:二,三月份平均每月降价的百分率为10%
    【点睛】
    本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a,每次降价的百分率为a,则第一次降价后为a(1-x);第二次降价后后为a(1-x)2,即:原数x(1-降价的百分率)2=后两次数.
    12、A
    【解析】
    首先根据题意画出图形,易得△OBC是等边三角形,继而可得正六边形的边长为R,然后利用解直角三角形求得边心距,又由S正六边形=求得正六边形的面积.
    【详解】
    解:如图,O为正六边形外接圆的圆心,连接OB,OC,过点O作OH⊥BC于H,

    ∵六边形ABCDEF是正六边形,半径为,
    ∴∠BOC=,
    ∵OB=OC=R,
    ∴△OBC是等边三角形,
    ∴BC=OB=OC=R,
    ∵OH⊥BC,
    ∴在中,,
    即,
    ∴,即边心距为;
    ∵,
    ∴S正六边形=,
    故选:A.
    【点睛】
    本题考查了正多边形和圆的知识;求得正六边形的中心角为60°,得到等边三角形是正确解答本题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1.
    【解析】
    因为一本书的厚度是一定的,根据本数与书的高度成正比列比例式即可得到结论.
    【详解】
    设这些书有x本,
    由题意得,,
    解得:x=1,
    答:这些书有1本.
    故答案为:1.
    【点睛】
    本题考查了比例的性质,正确的列出比例式是解题的关键.
    14、2
    【解析】
    利用平方差公式求解,即可求得答案.
    【详解】
    =()2-()2=5-3=2.
    故答案为2.
    【点睛】
    此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.
    15、
    【解析】
    解:过点C作CP⊥直线AB于点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,如图所示.
    当x=0时,y=3,∴点B的坐标为(0,3);
    当y=0时,x=4,∴点A的坐标为(4,0),∴OA=4,OB=3,∴AB==5,∴sinB=.
    ∵C(0,﹣1),∴BC=3﹣(﹣1)=4,∴CP=BC•sinB=.
    ∵PQ为⊙C的切线,∴在Rt△CQP中,CQ=1,∠CQP=90°,∴PQ==.
    故答案为.

    16、3

    相关试卷

    福建省泉州市南安市达标名校2022-2023学年中考数学全真模拟试题含解析:

    这是一份福建省泉州市南安市达标名校2022-2023学年中考数学全真模拟试题含解析,共16页。

    福建省泉州市洛江区重点达标名校2021-2022学年中考数学押题试卷含解析:

    这是一份福建省泉州市洛江区重点达标名校2021-2022学年中考数学押题试卷含解析,共17页。试卷主要包含了答题时请按要求用笔,下列说法正确的是等内容,欢迎下载使用。

    2022年福建省泉州市洛江区南片区市级名校中考二模数学试题含解析:

    这是一份2022年福建省泉州市洛江区南片区市级名校中考二模数学试题含解析,共20页。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map