搜索
    上传资料 赚现金
    英语朗读宝

    福建省厦门市思明区第六中学2021-2022学年中考联考数学试卷含解析

    福建省厦门市思明区第六中学2021-2022学年中考联考数学试卷含解析第1页
    福建省厦门市思明区第六中学2021-2022学年中考联考数学试卷含解析第2页
    福建省厦门市思明区第六中学2021-2022学年中考联考数学试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省厦门市思明区第六中学2021-2022学年中考联考数学试卷含解析

    展开

    这是一份福建省厦门市思明区第六中学2021-2022学年中考联考数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,对于反比例函数y=等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列运算正确的是( )
    A. B. C. D.
    2.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为(  )
    A.0.5×10﹣9米 B.5×10﹣8米 C.5×10﹣9米 D.5×10﹣10米
    3.如图,AB为⊙O的直径,C、D为⊙O上的点,若AC=CD=DB,则cos∠CAD =( )

    A. B. C. D.
    4.如图,已知AB∥CD,AD=CD,∠1=40°,则∠2的度数为(  )

    A.60° B.65° C.70° D.75°
    5.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:
    ①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是(  )

    A.2 B.3 C.4 D.5
    6.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程(  )
    A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90
    7.根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p(pa)与它的体积v(m3)的乘积是一个常数k,即pv=k(k为常数,k>0),下列图象能正确反映p与v之间函数关系的是(  )
    A. B.
    C. D.
    8.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:
    x
    ﹣2
    ﹣1
    0
    1
    2
    y
    8
    3
    0
    ﹣1
    0
    则抛物线的顶点坐标是(  )
    A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)
    9.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是(  )

    A. B. C. D.
    10.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是(  )
    A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上
    B.当k>0时,y随x的增大而减小
    C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为k
    D.反比例函数的图象关于直线y=﹣x成轴对称
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为;③当AD=2时,EF与半圆相切;④若点F恰好落在BC上,则AD=;⑤当点D从点A运动到点B时,线段EF扫过的面积是.其中正确结论的序号是 .

    12.已知函数y=-1,给出一下结论:
    ①y的值随x的增大而减小
    ②此函数的图形与x轴的交点为(1,0)
    ③当x>0时,y的值随x的增大而越来越接近-1
    ④当x≤时,y的取值范围是y≥1
    以上结论正确的是_________(填序号)
    13.函数的自变量的取值范围是.
    14.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是___________(写出一个即可).

    15.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为________.

    16.如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是______mm.

    三、解答题(共8题,共72分)
    17.(8分)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)
    18.(8分)已知:如图,在△OAB中,OA=OB,⊙O经过AB的中点C,与OB交于点D,且与BO的延长线交于点E,连接EC,CD.
    (1)试判断AB与⊙O的位置关系,并加以证明;
    (2)若tanE=,⊙O的半径为3,求OA的长.

    19.(8分)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:出租车的起步价是多少元?当x>3时,求y关于x的函数关系式;若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.

    20.(8分)解方程:x2-4x-5=0
    21.(8分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:
    组别

    成绩(分)

    频数(人数)

    频率





    2

    0.04





    10

    0.2





    14

    b





    a

    0.32





    8

    0.16

    请根据表格提供的信息,解答以下问题:
    (1)本次决赛共有 名学生参加;
    (2)直接写出表中a= ,b= ;
    (3)请补全下面相应的频数分布直方图;

    (4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .
    22.(10分)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.
    (1)求∠DOA的度数;
    (2)求证:直线ED与⊙O相切.

    23.(12分)(1)计算:﹣22+|﹣4|+()-1+2tan60°
    (2) 求 不 等 式 组的 解 集 .
    24.某通讯公司推出了A,B两种上宽带网的收费方式(详情见下表)

    设月上网时间为x h(x为非负整数),请根据表中提供的信息回答下列问题
    (1)设方案A的收费金额为y1元,方案B的收费金额为y2元,分别写出y1,y2关于x的函数关系式;
    (2)当35<x<50时,选取哪种方式能节省上网费,请说明理由



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    根据幂的乘方:底数不变,指数相乘.合并同类项即可解答.
    【详解】
    解:A、B两项不是同类项,所以不能合并,故A、B错误,
    C、D考查幂的乘方运算,底数不变,指数相乘. ,故D正确;
    【点睛】
    本题考查幂的乘方和合并同类项,熟练掌握运算法则是解题的关键.
    2、D
    【解析】
    解:0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米=5×10﹣10米.
    故选D.
    点睛:在负指数科学计数法 中,其中 ,n等于第一个非0数字前所有0的个数(包括下数点前面的0).
    3、D
    【解析】
    根据圆心角,弧,弦的关系定理可以得出===,根据圆心角和圆周角的关键即可求出的度数,进而求出它的余弦值.
    【详解】
    解:
    ===,


    故选D.
    【点睛】
    本题考查圆心角,弧,弦,圆周角的关系,熟记特殊角的三角函数值是解题的关键.
    4、C
    【解析】
    由等腰三角形的性质可求∠ACD=70°,由平行线的性质可求解.
    【详解】
    ∵AD=CD,∠1=40°,
    ∴∠ACD=70°,
    ∵AB∥CD,
    ∴∠2=∠ACD=70°,
    故选:C.
    【点睛】
    本题考查了等腰三角形的性质,平行线的性质,是基础题.
    5、D
    【解析】
    ①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;
    ②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;
    ③因为∠BAC=90°,根据平行四边形的面积公式可作判断;
    ④根据三角形中位线定理可作判断;
    ⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.
    【详解】
    ①∵AE平分∠BAD,
    ∴∠BAE=∠DAE,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,∠ABC=∠ADC=60°,
    ∴∠DAE=∠BEA,
    ∴∠BAE=∠BEA,
    ∴AB=BE=1,
    ∴△ABE是等边三角形,
    ∴AE=BE=1,
    ∵BC=2,
    ∴EC=1,
    ∴AE=EC,
    ∴∠EAC=∠ACE,
    ∵∠AEB=∠EAC+∠ACE=60°,
    ∴∠ACE=30°,
    ∵AD∥BC,
    ∴∠CAD=∠ACE=30°,
    故①正确;
    ②∵BE=EC,OA=OC,
    ∴OE=AB=,OE∥AB,
    ∴∠EOC=∠BAC=60°+30°=90°,
    Rt△EOC中,OC=,
    ∵四边形ABCD是平行四边形,
    ∴∠BCD=∠BAD=120°,
    ∴∠ACB=30°,
    ∴∠ACD=90°,
    Rt△OCD中,OD=,
    ∴BD=2OD=,故②正确;
    ③由②知:∠BAC=90°,
    ∴S▱ABCD=AB•AC,
    故③正确;
    ④由②知:OE是△ABC的中位线,
    又AB=BC,BC=AD,
    ∴OE=AB=AD,故④正确;
    ⑤∵四边形ABCD是平行四边形,
    ∴OA=OC=,
    ∴S△AOE=S△EOC=OE•OC=××,
    ∵OE∥AB,
    ∴,
    ∴,
    ∴S△AOP= S△AOE==,故⑤正确;
    本题正确的有:①②③④⑤,5个,
    故选D.
    【点睛】
    本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.
    6、A
    【解析】
    试题分析:设某种书包原价每个x元,根据题意列出方程解答即可. 设某种书包原价每个x元,
    可得:0.8x﹣10=90
    考点:由实际问题抽象出一元一次方程.
    7、C
    【解析】
    【分析】根据题意有:pv=k(k为常数,k>0),故p与v之间的函数图象为反比例函数,且根据实际意义p、v都大于0,由此即可得.
    【详解】∵pv=k(k为常数,k>0)
    ∴p=(p>0,v>0,k>0),
    故选C.
    【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.
    8、C
    【解析】
    分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标.
    详解:当或时,,当时,,
    ,解得 ,
    二次函数解析式为,
    抛物线的顶点坐标为,
    故选C.
    点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键.
    9、C
    【解析】
    严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.
    【详解】
    根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.
    故选C.
    【点睛】
    本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
    10、D
    【解析】
    分析:根据反比例函数的性质一一判断即可;
    详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;
    B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;
    C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;
    D.正确,本选项符合题意.
    故选D.
    点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、①③⑤.
    【解析】
    试题分析:①连接CD,如图1所示,∵点E与点D关于AC对称,∴CE=CD,∴∠E=∠CDE,∵DF⊥DE,∴∠EDF=90°,∴∠E+∠F=90°,∠CDE+∠CDF=90°,∴∠F=∠CDF,∴CD=CF,∴CE=CD=CF,∴结论“CE=CF”正确;

    ②当CD⊥AB时,如图2所示,∵AB是半圆的直径,∴∠ACB=90°,∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=.∵CD⊥AB,∠CBA=30°,∴CD=BC=.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为.∴结论“线段EF的最小值为”错误;

    ③当AD=2时,连接OC,如图3所示,∵OA=OC,∠CAB=60°,∴△OAC是等边三角形,∴CA=CO,∠ACO=60°,∵AO=4,AD=2,∴DO=2,∴AD=DO,∴∠ACD=∠OCD=30°,∵点E与点D关于AC对称,∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切,∴结论“EF与半圆相切”正确;

    ④当点F恰好落在上时,连接FB、AF,如图4所示,∵点E与点D关于AC对称,∴ED⊥AC,∴∠AGD=90°,∴∠AGD=∠ACB,∴ED∥BC,∴△FHC∽△FDE,∴FH:FD=FC:FE,∵FC=EF,∴FH=FD,∴FH=DH,∵DE∥BC,∴∠FHC=∠FDE=90°,∴BF=BD,∴∠FBH=∠DBH=30°,∴∠FBD=60°,∵AB是半圆的直径,∴∠AFB=90°,∴∠FAB=30°,∴FB=AB=4,∴DB=4,∴AD=AB﹣DB=4,∴结论“AD=”错误;

    ⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称,∴EF扫过的图形就是图5中阴影部分,∴S阴影=2S△ABC=2×AC•BC=AC•BC=4×=,∴EF扫过的面积为,∴结论“EF扫过的面积为”正确.
    故答案为①③⑤.

    考点:1.圆的综合题;2.等边三角形的判定与性质;3.切线的判定;4.相似三角形的判定与性质.
    12、②③
    【解析】
    (1)因为函数的图象有两个分支,在每个分支上y随x的增大而减小,所以结论①错误;
    (2)由解得:,
    ∴的图象与x轴的交点为(1,0),故②中结论正确;
    (3)由可知当x>0时,y的值随x的增大而越来越接近-1,故③中结论正确;
    (4)因为在中,当时,,故④中结论错误;
    综上所述,正确的结论是②③.
    故答案为:②③.
    13、x≠1
    【解析】
    该题考查分式方程的有关概念
    根据分式的分母不为0可得
    X-1≠0,即x≠1
    那么函数y=的自变量的取值范围是x≠1
    14、AB=AD(答案不唯一).
    【解析】
    已知OA=OC,OB=OD,可得四边形ABCD是平行四边形,再根据菱形的判定定理添加邻边相等或对角线垂直即可判定该四边形是菱形.所以添加条件AB=AD或BC=CD或AC⊥BD,本题答案不唯一,符合条件即可.
    15、1-1.
    【解析】
    将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG为等边三角形,进而得出△CEF为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此题得解.
    【详解】
    将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.

    ∵AB=AC=2,∠BAC=120°,
    ∴∠ACB=∠B=∠ACF=10°,
    ∴∠ECG=60°.
    ∵CF=BD=2CE,
    ∴CG=CE,
    ∴△CEG为等边三角形,
    ∴EG=CG=FG,
    ∴∠EFG=∠FEG=∠CGE=10°,
    ∴△CEF为直角三角形.
    ∵∠BAC=120°,∠DAE=60°,
    ∴∠BAD+∠CAE=60°,
    ∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.
    在△ADE和△AFE中,

    ∴△ADE≌△AFE(SAS),
    ∴DE=FE.
    设EC=x,则BD=CF=2x,DE=FE=6-1x,
    在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,
    EF==x,
    ∴6-1x=x,
    x=1-,
    ∴DE=x=1-1.
    故答案为:1-1.
    【点睛】
    本题考查了全等三角形的判定与性质、勾股定理以及旋转的性质,通过勾股定理找出方程是解题的关键.
    16、200
    【解析】
    先求出OA的长,再由垂径定理求出AC的长,根据勾股定理求出OC的长,进而可得出结论.
    【详解】
    解:∵⊙O的直径为1000mm,
    ∴OA=OA=500mm.
    ∵OD⊥AB,AB=800mm,
    ∴AC=400mm,
    ∴OC== =300mm,
    ∴CD=OD-OC=500-300=200(mm).
    答:水的最大深度为200mm.
    故答案为:200
    【点睛】
    本题考查的是垂径定理的应用,根据勾股定理求出OC的长是解答此题的关键.

    三、解答题(共8题,共72分)
    17、-17.1
    【解析】
    按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.
    【详解】
    解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),
    =﹣8﹣14﹣9÷(﹣2),
    =﹣62+4.1,
    =﹣17.1.
    【点睛】
    此题要注意正确掌握运算顺序以及符号的处理.
    18、(1)AB与⊙O的位置关系是相切,证明见解析;(2)OA=1.
    【解析】
    (1)先判断AB与⊙O的位置关系,然后根据等腰三角形的性质即可解答本题;
    (2)根据题三角形的相似可以求得BD的长,从而可以得到OA的长.
    【详解】
    解:(1)AB与⊙O的位置关系是相切,
    证明:如图,连接OC.
    ∵OA=OB,C为AB的中点,
    ∴OC⊥AB.
    ∴AB是⊙O的切线;
    (2)∵ED是直径,
    ∴∠ECD=90°.
    ∴∠E+∠ODC=90°.
    又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,
    ∴∠BCD=∠E.
    又∵∠CBD=∠EBC,
    ∴△BCD∽△BEC.
    ∴.
    ∴BC2=BD•BE.
    ∵,
    ∴.
    ∴.
    设BD=x,则BC=2x.
    又BC2=BD•BE,
    ∴(2x)2=x(x+6).
    解得x1=0,x2=2.
    ∵BD=x>0,
    ∴BD=2.
    ∴OA=OB=BD+OD=2+3=1.

    【点睛】
    本题考查直线和圆的位置关系、等腰三角形的性质、三角形的相似,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    19、 (1)y=2x+2(2)这位乘客乘车的里程是15km
    【解析】
    (1)根据函数图象可以得出出租车的起步价是8元,设当x>3时,y与x的函数关系式为y=kx+b(k≠0),运用待定系数法就可以求出结论;
    (2)将y=32代入(1)的解析式就可以求出x的值.
    【详解】
    (1)由图象得:
    出租车的起步价是8元;
    设当x>3时,y与x的函数关系式为y=kx+b(k≠0),由函数图象,得

    解得:
    故y与x的函数关系式为:y=2x+2;
    (2)∵32元>8元,
    ∴当y=32时,
    32=2x+2,
    x=15
    答:这位乘客乘车的里程是15km.
    20、x1 ="-1," x2 =5
    【解析】
    根据十字相乘法因式分解解方程即可.
    21、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.
    【解析】
    试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.
    试题解析:(1)2÷0.04=50
    (2)50×0.32=16 14÷50=0.28
    (3)
    (4)(0.32+0.16)×100%=48%
    考点:频数分布直方图
    22、(1)∠DOA =100°;(2)证明见解析.
    【解析】
    试题分析:(1)根据∠CBA=50°,利用圆周角定理即可求得∠DOA的度数;(2)连接OE,利用SSS证明△EAO≌△EDO,根据全等三角形的性质可得∠EDO=∠EAO=90°,即可证明直线ED与⊙O相切.
    试题解析:(1)∵∠DBA=50°,∴∠DOA=2∠DBA=100°;
    (2)证明:连接OE,

    在△EAO和△EDO中,
    AO=DO,EA=ED,EO=EO,
    ∴△EAO≌△EDO,
    得到∠EDO=∠EAO=90°,
    ∴直线ED与⊙O相切.
    考点:圆周角定理;全等三角形的判定及性质;切线的判定定理
    23、(1)1;(2)-1≤x

    相关试卷

    2023年福建省厦门市思明区湖里中学中考数学模拟试卷(含解析):

    这是一份2023年福建省厦门市思明区湖里中学中考数学模拟试卷(含解析),共21页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    福建省厦门市思明区莲花中学2021-2022学年中考数学五模试卷含解析:

    这是一份福建省厦门市思明区莲花中学2021-2022学年中考数学五模试卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,若a+|a|=0,则等于,下列计算正确的是,下列哪一个是假命题等内容,欢迎下载使用。

    福建省厦门市思明区双十中学2022年中考联考数学试卷含解析:

    这是一份福建省厦门市思明区双十中学2022年中考联考数学试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,4的平方根是,下列运算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map