终身会员
搜索
    上传资料 赚现金
    专题21.21 实际问题与一元二次方程专题——销售与利润问题(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版)
    立即下载
    加入资料篮
    专题21.21 实际问题与一元二次方程专题——销售与利润问题(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版)01
    专题21.21 实际问题与一元二次方程专题——销售与利润问题(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版)02
    专题21.21 实际问题与一元二次方程专题——销售与利润问题(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版)03
    还剩14页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题21.21 实际问题与一元二次方程专题——销售与利润问题(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版)

    展开
    这是一份专题21.21 实际问题与一元二次方程专题——销售与利润问题(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版),共17页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题21.21 实际问题与一元二次方程专题——销售与利润问题
    (基础篇)(专项练习)
    一、单选题
    1.某商店从厂家以每件21元的价格购进一批商品.若每件商品的售价定为元,则可卖出件,若商店计划从这批商品中获取400元的利润(不计其他成本),求售价.根据题意,下面所列方程正确的是(     )
    A. B.
    C. D.
    2.某商品原来按进价百分之二十的利润定价,进价受原材料价格影响连续两次下跌,售价相应调整为原来售价的八折,利润恰好与原来持平,设进价两次下跌的平均百分率为x,则由题意,可列方程为(  )
    A.20%×0.8﹣(1﹣x)2=20%
    B.20%×0.8﹣1=(1+20%)﹣(1﹣x)2
    C.(1+20%)×0.8﹣(1﹣x)2=20%
    D.(1+20%)×0.8﹣1=(1+20%)﹣(1﹣x)2
    3.小强为活动小组购买统一服装,经理给予如下优惠:如果一次性购买不超过10件,单价为80元:如果一次性购买超过10件,那么每多买一件,购买的所有服装的单价降低2元,但单价最终不低于50元.小强一次性购买这种服装花费1200元,则他购买了这种服装的件数是(        )
    A.20件 B.24件 C.20件或30件 D.30件
    4.“抖音直播带货”已经成为一种热门的销售方式,某抖音主播代销某一品牌的电子产品(这里代销指厂家先免费提供货源,待货物销售后再进行结算,未售出的由厂家负责处理).销售中发现每件售价99元时,日销售量为200件,当每件电子产品每下降5元时,日销售量会增加10件.已知每售出1件电子产品,该主播需支付厂家和其他费用共50元,设每件电子产品售价为x(元),主播每天的利润为w(元),则w与x之间的函数解析式为(       )
    A. B.
    C. D.
    5.文博会期间,某公司调查一种工艺品的销售情况,下面是两位调查员和经理的对话.
    小张:该工艺品的进价是每个22元;
    小李:当销售价为每个38元时,每天可售出160个;当销售价降低3元时,平均每天将能多售出120个.
    经理:为了实现平均每天3640元的销售利润,这种工艺品的销售价应降低多少元?
    设这种工艺品的销售价每个应降低x元,由题意可列方程为(  )
    A.(38﹣x)(160+×120)=3640
    B.(38﹣x﹣22)(160+120x)=3640
    C.(38﹣x﹣22)(160+3x×120)=3640
    D.(38﹣x﹣22)(160+×120)=3640
    二、填空题
    6.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,由于疫情,为了扩大销售量,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天销售这种衬衫的盈利要达到1200元,则每件衬衫应降价多少元?设每件衬衫降价x元,由题意列得方程______.
    7.某商店以30元的价格购进了一批服装,若按每件50元出售,一个月内可销售100件;当售价每提价1元时,其月销售量就减少5件.当利润达到1875元时,设售价提价x元,则可列方程为____________.
    8.某商品进价为3元,当售价为x元时可销售商品(x+3)个,此时获利160元,则该商品售价为____________元.
    9.将进货单价为40元的商品按50元出售时,就能卖出500个,已知这种商品每个涨价1元,其销售量就减少10个,为了赚得8000元的利润,商品售价应为________元.
    10.2020年5月11日习总书记到山西大同云州区视察了有机黄花标准化种植基地,他指出要保护好、发展好这个产业,让黄花成为群众脱贫致富的“摇钱草”.黄花又名萱草、金针菜、忘忧草,是一种营养价值很高的蔬菜,从明朝开始,大同就享有“黄花之乡”的盛名,原价为70元/千克的黄花菜,每天可售出30千克,在试销时发现,售价每降,售出的黄花菜增加,现在每天销售这种黄花菜的总售价为2268元.根据题意,可列方程为:___________.

    黄花菜喜光耐早地,但花期需水量大,若遇干旱花蕾易脱落.其地上部分不耐寒,开花期要求较高温度,较为适宜.黄花菜对地形要求不高,地壤忌过湿或积水
    三、解答题
    11.某服装柜在销售中发现:其专柜某款童装平均每天可售出 20 件,每件盈利 40 元.为了迎接“元旦”,商场决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每件童装降价 1 元,那么平均每天就可多售出 2 件.要想平均每天销售这种童装能盈利 1200 元,又能尽量减少库存,那么每件童装应降价多少元?



    12.在刚刚过去的“五一”假期中,某超市为迎接“五一”小长假购物高潮,经销甲、乙两种品牌的洗衣液.市场上甲种品牌洗衣液的进价比乙种品牌洗衣液的进价每瓶便宜10元,该超市用6000元购进的甲种品牌洗衣液与用8000元购进的乙种品牌洗衣液的瓶数相同.
    (1)求甲、乙两种品牌的洗衣液的进价;
    (2)在销售中,该超市决定将甲种品牌的洗衣液以每瓶45元售出,每天固定售出100瓶;但调查发现,乙种品牌的洗衣液每瓶售价50元时,每天可售出140瓶,并且当乙种品牌的洗衣液每瓶售价每提高1元时,乙种品牌的洗衣液每天就会少售出2瓶,当乙种品牌的洗衣液的每瓶售价为多少元时,两种品牌的洗衣液每天的利润之和可达到4700元?


    13.某服装店在销售中发现:进货价为每件50元,销售价为每件90元的某品牌服装平均每天可售出20件.现服装店决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每件服装降价1元,那么平均每天就可多售出2件.
    (1)求销售价在每件90元的基础上,每件降价多少元时,平均每天销售这种服装能盈利1200元,同时又要使顾客得到较多的实惠?
    (2)要想平均每天盈利2000元,可能吗?请说明理由.



    14.云南某店销售某品牌置物架,平时每天平均可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店在“双十一”期间采取了降价促销措施,在每件盈利不少于27元的前提下,经过一段时间销售,发现销售单价每降低4元,平均每天可多售出8件.
    (1)若降价3元,则平均每天的销售数量为_________件.
    (2)当每个置物架降价多少元时,该商店每天销售利润为1200元?



    15.近年来,并江县创新“稻田+”产业发展模式,全面助力乡村振兴.某工厂为种植示范区提供加工工具,按供需要求分为十个档次,若生产第一档次(最低档次)的工具,一天可生产76件,每作的利润为10元,每提高一个档次,每件的利润增加2元,每天的产量将减少4件,设工具的档次(每天只生产一个档次的工具)为x,请解答下列问题:
    (1)一天生产的工具件数为___件,每件工具的利润为___元;(用含x的代数式表示)
    (2)若工厂生产该工具一天的总利润为1080元,求这天生产工具的档次x的值.






    16.某商品的进价为每件40元,现在的售价为每件60元,每周可卖出300件.市场调查反映:如调整价格,每涨价1元,每周要少卖出10件,每周销量不少于240件.
    (1)每件售价最高为多少元?
    (2)实际销售时,为尽快减少库存,每件在最高售价的基础上降价销售,每降价1元,每周销量比最低销量240件多卖出20件,要使利润达到6500元,则每件应降价多少元?



    17.某大型果品批发商场经销一种高档坚果,原价每千克64元,连续两次降价后每千克49元.
    (1)若每次下降的百分率相同,求每次下降的百分率;
    (2)若该坚果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少40千克.现该商场要保证销售该坚果每天盈利4500元,且要减少库存,那么每千克应涨价多少元?



    18.2020年我县加大玫瑰产业的宣传,平阴玫瑰香飘世界,某商店在2019年至2021年期间销售一种玫瑰礼盒.2019年,该商店用3500元购进了这种礼盒且全部售完;2021年,这种礼盒的进价比2019年下降了11元盒,该商店用2400元购进了与2019年相同数量的礼盒也全部售完.礼盒的售价均为60元盒.
    (1)2019年这种礼盒的进价是多少元盒?
    (2)若该商店每年销售这种礼盒所获利润的年增长率相同,求年增长率是多少?






    19.某种新商品的进价为每件120元在试销期间发现,当每件商品的售价为130元时,每天可销售70件;当每件商品的售价高于130元时,每涨价1元,日销售量就减少1件,据此,请解答以下问题:
    (1)当每件商品的售价为140元时,每夭可销售________件,每天可盈利________元;
    (2)若每天至少销售40件且每天可盈利1500元,则每件商品的售价应定为多少元?







    20.土特产专卖店销售核桃,其进价为每千克40元,若按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃平均每天获利2240元,则:
    (1)单价每降低1元,平均每天的销售可增加 千克.
    (2)每千克核桃应降价多少元?
    (3)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
















    参考答案
    1.B
    【分析】
    由销售问题的数量关系总利润=单件利润×数量建立方程求出其解即可.
    解:根据题意,得 (x﹣21)(350﹣10x)=400,
    故选:B.
    【点拨】本题考查了销售问题的数量关系:总利润=单件利润×数量的运用,列一元二次方程解实际问题的运用,解答时由销售问题的数量关系建立方程是关键.
    2.C
    【分析】
    利用利润=销售价格﹣进价,结合调整售价后获得的利润恰好与原来持平,即可得出关于x的一元二次方程,即可得出选项.
    解:,
    故选:C.
    【点拨】题目主要考查一元二次方程的应用,理解题意,根据相应的等量关系列出方程是解题关键.
    3.A
    【分析】
    设小强购买了这种服装x件,则每件的价格为(100-2x)元,根据总价=单价×数量,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.
    解:设小强购买了这种服装x件.
    由题意得:,
    解得:x1=20,x2=30.
    ∵80-2(x-10)≥50,
    ∵x≤25,
    ∴x=20.
    故选:A.
    【点拨】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
    4.D
    【分析】
    设每件电子产品售价为元,主播每天的利润为元,根据每件利润=实际售价-成本价,销售量=原销售量+变化量,总利润=每件利润×数量,即可得出答案.
    解:设每件电子产品售价为元,主播每天的利润为元,
    则每件盈利元,每天可销售件,
    根据题意得:.
    故选:D.
    【点拨】本题考查二次函数的应用(降价促销问题),理清题意找准数量与价格变化关系是解题的关键.
    5.D
    【分析】
    由这种工艺品的销售价每个降低x元,可得出每个工艺品的销售利润为(38-x-22)元,销售量为(160+×120)个,利用销售总利润=每个的销售利润×销售量,即可得出关于x的一元二次方程,此题得解.
    解:∵这种工艺品的销售价每个降低x元,
    ∴每个工艺品的销售利润为(38-x-22)元,销售量为(160+×120)个.
    依题意得:(38-x-22)(160+×120)=3640.
    故选:D.
    【点拨】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
    6.
    【分析】
    设每件衬衫降价x元,根据每件衬衫每降价1元,商场平均每天可多售出2件可得销售量为,则每件衬衫的利润为,根据销售量乘以每件衬衫的利润等于1200元,列出一元二次方程即可
    解:设每件衬衫降价x元,根据题意得,

    故答案为:
    【点拨】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.
    7.5x2-125=0
    【分析】
    根据“每月售出服装的利润=每件的利润×每周的销售量”可得1875=(50+x-30)(100-5x),然后整理即可解答.
    解:根据题意得出:
    1875=(50+x−30)(100-5x)
    整理得:5x2-125=0
    故答案为:5x2-125=0.
    【点拨】本题主要考查了根据实际问题列一元二次方程,理解每件利润以及其销量是解答本题的关键.
    8.13
    【分析】
    由题意直接根据“获利是160元”,即销售商品的个数×每件的盈利=获利,可列出方程,解方程即可求解.
    解:根据题意得(x-3)(x+3)=160
    解方程得x=13或x=-13(负值舍去)
    所以该商品的售价为13元.
    故答案为:13.
    【点拨】本题考查一元二次方程的实际应用,找到关键描述语,找到等量关系准确地列出方程是解决问题的关键.
    9.60或80
    【分析】
    设商品售价应为x元,由题意可得,进而求解即可.
    解:设商品售价应为x元,由题意可得:

    解得:,
    ∴当商品售价为60元或80元时,赚得8000元的利润;
    故答案为60或80.
    【点拨】本题主要考查一元二次方程的应用,熟练掌握一元二次方程的应用是解题的关键.
    10.
    【分析】
    根据题意找到对应的等量关系列出方程即可得到答案.
    解:原价为70元/千克的黄花菜,每天可售出30千克,在试销时发现,售价每降,售出的黄花菜增加,
    ∴现价为,卖出的黄花菜数量为
    故依题意可得:
    故答案为:.
    【点拨】本题主要考查了一元二次方程的实际应用,解题的关键在于能够找到等量关系列出方程求解.
    11.20
    【分析】
    设每件童装应降价x元,则每件童装实际盈利(40﹣x)元.利用每件童装的盈利×销售件数=盈利即可列出方程求解.
    解:设每件童装应降价x元,则每件童装实际盈利(40﹣x)元.由题意可得:
    (40﹣x)(20+2x)=1200,
    整理得:x2﹣30x+200=0,
    解得:x1=10,x2=20.
    ∵为扩大销售量,增加盈利,尽快减少库存,
    ∴当x=20时更符合题意,
    ∴每件童装应降价20元.
    【点拨】本题考查了一元二次方程的应用——营销问题,读懂题意,找准等量关系,列出方程是解题的关键.
    12.(1)甲种品牌的洗衣液的进价为30元,乙种品牌的洗衣液的进价为40元.
    (2)当乙种品牌的洗衣液的每瓶售价为80元时,两种品牌的洗衣液每天的利润之和可达到4700元.
    【分析】
    (1)设甲种品牌的洗衣液的进价为x元,乙种品牌的洗衣液的进价为(x+10)元,然后根据题意可列方程进行求解;
    (2)设当乙种品牌的洗衣液的每瓶售价为m元时,两种品牌的洗衣液每天的利润之和可达到4700元,然后根据题意可列方程进行求解.
    (1)解:设甲种品牌的洗衣液的进价为x元,乙种品牌的洗衣液的进价为(x+10)元,由题意得:

    解得:,
    经检验:x=30是原方程的解,
    ∴乙种品牌的进价为:30+10=40(元),
    答:甲种品牌的洗衣液的进价为30元,乙种品牌的洗衣液的进价为40元.
    (2)解:设当乙种品牌的洗衣液的每瓶售价为m元时,两种品牌的洗衣液每天的利润之和可达到4700元,由题意得:

    整理得:,
    解得:,
    答:当乙种品牌的洗衣液的每瓶售价为80元时,两种品牌的洗衣液每天的利润之和可达到4700元.
    【点拨】本题主要考查分式方程及一元二次方程的应用,解题的关键是找准已知与未知量的等量关系.
    13.(1)每件降价20元 (2)不可能,理由见分析
    【分析】
    (1)根据题意列出方程,即每件服装的利润×销售量=总盈利,再求解,把不符合题意的舍去;
    (2)根据题意列出方程进行求解即可.
    (1)解:设每件服装降价x元.
    由题意得:
    (90-x-50)(20+2x)=1200,
    解得:x1=20,x2=10,
    为使顾客得到较多的实惠,应取x=20;
    答:每件降价20元时,平均每天销售这种服装能盈利1200元,同时又要使顾客得到较多的实惠;
    (2)解:不可能,理由如下:
    依题意得:
    (90-x-50)(20+2x)=2000,
    整理得:x2-30x+600=0,
    Δ=(-30)2-4×600=900-2400=-1500<0,
    则原方程无实数解.
    则不可能每天盈利2000元.
    【点拨】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程.
    14.(1)26 (2)每个置物架应降价10元时,该商店每天销售利润为1200元.
    【分析】
    (1)根据销售单价每降低4元,平均每天可多售出8件,可得若降价3元,则平均每天可多售出2×3=6件,即平均每天销售数量为20+6=26件;
    (2)利用置物架平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.
    (1)解:若降价3元,则平均每天销售数量为20+2×3=26件.
    故答案为:26;
    (2)解:设每个置物架降价x元时,该商店每天销售利润为1200元.
    根据题意,得 (40﹣x)(20+2x)=1200,
    整理,得x2﹣30x+200=0,
    解得:x1=10,x2=20.
    ∵要求每件盈利不少于27元,40-20=20<27,
    ∴x2=20应舍去,
    解得:x=10.
    答:每个置物架应降价10元时,该商店每天销售利润为1200元.
    【点拨】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.
    15.(1)(80-4x);(8+2x) (2)这天生产工具的档次x的值为5
    【分析】
    (1)每件的利润为10+2(x-1),生产件数为76-4(x-1);
    (2)由一天生产工具的数量×每件工具的利润=1080列出方程,求出x的实际值即可.
    解:(1)一天生产的工具件数为[76-4(x-1)]=(80-4x)件,
    每件工具的利润为[10+2(x-1)]=(8+2x)元,
    故答案为:(80-4x);(8+2x);
    (2)根据题意,得.
    整理,得.
    解得,.
    ∵,不符合题意,舍去,
    ∴.
    答:这天生产工具的档次x的值为5
    【点拨】此题考查的是一元二次方程的应用,难度一般,注意,在市场营销问题中,一件的利润和件数,一个量增加的同时,另一个量会减少,要根据题意,正确使用,先根据总利润=产品总量×单件产品利润确定一元二次方程,再进行求解,同时要根据题目限定条件取舍答案.
    16.(1)66元. (2)13元.
    【分析】
    (1)根据每涨价1元,每周要少卖出10件,每周销量不少于240件,可以列出不等式.
    (2)根据每降价1元,每周销量比最低销量240件多卖出20件,要使利润达到6500元,可以列一元一次方程,因为要尽快减少库存,所以取最大值.
    解:(1)设每件涨价x元,则


    解得
    x取最大值,
    ∴x=6,
    ∴每件售价最高为:元.
    (2)设每件应降价y元,则




    解得
    ∵要减少库存,
    (舍去),

    ∴每件应降价13元.
    【点拨】本题主要考查列一元一次不等式和列一元一次方程,熟练找到不等关系和等量关系是解此题的关键.
    17.(1)12.5% (2)每千克应涨价5元
    【分析】
    (1)设每次降价的百分率为a,(1﹣a)2为两次降价的百分率,64降至49就是方程的平衡条件,列出方程求解即可;
    (2)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值.
    (1)解:设每次下降的百分率为a,根据题意,得:
    64(1﹣a)2=49,
    解得,a=1.875(舍)或a=0.125=12.5%,
    故每次下降的百分率为12.5%;
    (2)解:设每千克应涨价x元,
    由题意得, (10+x)(500﹣40x)=4500,
    整理,得2x2﹣5x﹣25=0,
    解得:x1=5,x2=﹣2.5(舍),
    故该商场要保证每天盈利4500元,且要减少库存,那么每千克应涨价5元.
    【点拨】本题主要考查了一元二次方程应用,根据题意找准等量关系列出方程是解答本题的关键.
    18.(1)35元盒 (2)20%
    【分析】
    (1)设2019年这种礼盒的进价为元/盒,则2021年这种礼盒的进价为 元/盒,根据数量=总价÷单价,结合2019年用3500元购进的数量和2021年用2400元购进的数量相同,即可得出关于的分式方程,解之并验根后即可得出结论;
    (2)利用总利润=每盒的利润×销售数量,可分别求出2019及2021年的销售这种礼盒所获利润,设该商店每年销售礼盒所获利润的年增长率为,根据2019年及2021年销售这种礼盒所获利润,即可得出关于的一元二次方程,解之取其正值即可得出结论.
    (1)解:设2019年这种礼盒的进价为元盒,则2021年这种礼盒的进价为元盒,
    依题意得:,
    解得:,
    经检验,是原方程的解,且符合题意,
    答:2019年这种礼盒的进价是35元盒;
    (2)解:2019年所获利润为(元,
    2021年所获利润为(元,
    设该商店每年销售礼盒所获利润的年增长率为,
    依题意得:,
    解得:,(不合题意,舍去),
    答:该商店每年销售礼盒所获利润的年增长率是.
    【点拨】本题考查了分式方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元二次方程.
    19.(1)60,1200 (2)每件商品的销售价定为150元时,商场每天盈利可达到1500元
    【分析】
    (1)根据当每件商品的售价高于130元时,每涨价1元,日销售量就减少1件,即可求得每天的销量,然后根据盈利=销量(售价-进价)求出每天的盈利.
    (2)设每天销售价定为x元.根据盈利=销量(售价-进价)可以得到关于x的一元二次方程.求解之后根据题目要求取舍即可.
    解:(1)由题意得,每天可销售:70-(140-130)=60(件),
    商场可盈利为:60×(140-120)=1200(元).
    (2)设每天销售价定为x元,
    由题意得:(200-x)(x-120)=-x2+320x-24000=1500,
    解得:x1=150,x2=170,
    ∵70-(150-130)=50>40, 70-(170-130)=30<40,
    ∴x=150元,
    答:每件商品的销售价定为150元时,商场每天盈利可达到1500元.
    【点拨】本题考查了一元二次方程的应用.根据利润=每件盈利销量,盈利=销量(售价-进价)列出关于x的一元二次方程,求解之后根据题意取舍是解题关键.

    20.(1)10 (2)每千克核桃应降价4元或6元 (3)该店应按原售价的九折出售
    【分析】
    (1)根据题意用20除2即可;
    (2)设每千克核桃应降价x元,根据题意即可列出方程,解出x即可.
    (3)由题意可知让利于顾客时每千克核桃应降价6元,即此时售价为54元,由此即得出答案.
    (1)解:20÷2=10千克
    故答案为:10;
    (2)解:设每千克核桃应降价x元,
    则可列方程:,
    解得:,.
    故每千克核桃应降价4元或6元;
    (3)解:由(2)可知每千克核桃可降价4元或6元.
    ∵要尽可能让利于顾客,
    ∴每千克核桃应降价6元.
    此时,售价为:60-6=54(元),
    ×100%=90%.
    故该店应按原售价的九折出售.
    【点拨】本题考查一元二次方程的实际应用.根据题意找出数量关系,列出等式是解题关键.
    相关试卷

    数学九年级上册21.1 一元二次方程课堂检测: 这是一份数学九年级上册21.1 一元二次方程课堂检测,共18页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题22.41 二次函数专题-销售与利润问题中考真题专练(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版): 这是一份专题22.41 二次函数专题-销售与利润问题中考真题专练(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版),共38页。

    专题22.40 二次函数专题-销售与利润问题(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版): 这是一份专题22.40 二次函数专题-销售与利润问题(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版),共24页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题21.21 实际问题与一元二次方程专题——销售与利润问题(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map