所属成套资源:2022-2023学年北师大九年级数学上册《 考点解读》专题训练
- 专题1.1 菱形的性质与判定(知识解读)-2022-2023学年九年级数学上册《 考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题1.1 菱形的性质与判定(专项训练)-2022-2023学年九年级数学上册《 考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题1.2 矩形的性质与判定(知识解读)-2022-2023学年九年级数学上册《 考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题1.2 矩形的性质与判定(专项训练)-2022-2023学年九年级数学上册《 考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题1.3 正方形的性质与判定(能力提升)-2022-2023学年九年级数学上册《考点解读•专题训练》(北师大版) 试卷 0 次下载
专题1.2 矩形的性质与判定(能力提升)-2022-2023学年九年级数学上册《考点解读•专题训练》(北师大版)
展开
这是一份专题1.2 矩形的性质与判定(能力提升)-2022-2023学年九年级数学上册《考点解读•专题训练》(北师大版),文件包含专题12矩形的性质与判定能力提升解析版docx、专题12矩形的性质与判定能力提升原卷版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
专题1.2 矩形的性质与判定(能力提升)(原卷版)一、选择题。1.(2022春•遵化市期末)如图,矩形ABCD中,对角线AC,BD交于点O,若∠AOB=60°,BD=8,则DC长为( )A.4 B.4 C.3 D.52.(2021秋•沂水县期末)下列各图是由若干个正方形和长方形组成的,其中能表示等式(a+b)2=a2+2ab+b2的是( )A. B. C. D.3.(2022•海曙区校级模拟)如图,矩形ABCD中,AB=8cm,AD=6cm,EF是对角线BD的垂直平分线,则EF的长为( ) A.cm B.cm C.cm D.8cm4.(2021春•洛南县期末)如图,在四边形ABCD中,对角线AC,BD相交于点O,且OA=OC,OB=OD.若要使四边形ABCD为矩形,则可以添加的条件是( ) A.∠AOB=60° B.AC=BD C.AC⊥BD D.AB=BC5.(2022春•黔南州期末)如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于E,PF⊥BC于点F,连接EF,则线段EF的最小值为( ) A.24 B.3.6 C.4.8 D.56.(2021春•临沭县期末)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30°,则∠E的度数是( ) A.45° B.30° C.20° D.15°7.(2021•天津一模)如图,四边形OBCD是矩形,O,B,D三点的坐标分别是(0,0),(8,0),(0,6),对角线交点为E,则点E的坐标是( ) A.(6,8) B.(3,4) C.(8,6) D.(4,3)8.(2022春•碑林区校级期末)如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是( ) A. B. C. D.不确定9.(2022•科左中旗二模)如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE,设AC=12,BD=16,则OE的长为( )A.8 B.9 C.10 D.1210.(2022•肇东市模拟)如图,在△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF的中点,则PM的最小值为( ) A.5 B.2.5 C.4.8 D.2.4二、填空题。11.(2022春•开福区校级期末)如图,矩形ABCD中,AC,BD交于点O,M,N分别为BC,OC的中点,若MN=3,则BD= . 12.(2021春•浦东新区期末)如图,矩形ABCD的对角线AC,BD相交于点O,∠AOB=70°,则∠ACB的大小为 . 13.(2021春•海珠区校级月考)如图,若直角三角形的两直角边分别为4cm和3cm,则斜边上的中线CD长为 . 14.(2021•南浔区一模)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形和矩形分别称为格点三角形和格点矩形.如图,已知Rt△ABC是5×5网格图形中的格点三角形,则在该网格图形中,与△ABC面积相等的格点矩形的周长所有可能值是 .15.(2021•富阳区二模)如图,矩形ABCD的对角线AC,BD交于点O,若E、F分别为AO,AD的中点,若AC=24,则EF的长为 . 16.(2021•兴平市一模)已知矩形ABCD,AB=4,AD=6,点E为AB边的中点,点F为BC边上的动点,点B和点B'关于EF对称,则B'D的最小值是 . 17.(2022•泰山区一模)如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为 . 18.(2021春•临海市校级期中)如图,在平面直角坐标系中,矩形OABC的顶点B(1,2),若锁定OA,向左推矩形OABC,使点B落在y轴的点B′的位置,则点C的对应点C′的坐标为 . 三、解答题。19.(2022•盐池县二模)如图所示,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=2,求菱形ABCD的面积. 20.(2021•天桥区二模)如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,DF⊥AC于点F.求证:AE=DF. 21.(2022•揭阳一模)如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形.(2)若AD=4,AB=2,且MN⊥AC,则DM的长为 . 22.(2021春•西吉县期末)已知:如图,在▱ABCD中,AF、BH、CH、DF分别是∠BAD、∠ABC、∠BCD、∠ADC的平分线.求证:四边形EFGH是矩形. 23.(2021春•东丽区期中)如图,在矩形ABCD中,AB=8,BC=6.动点P、Q分别从点D、A同时出发向右运动,点P的运动速度为2个单位/秒,点Q的运动速度为1个单位/秒,当一个点到达终点时两个点都停止运动.设运动的时间为t(s)(1)当t=2时,PQ的长为 ;(2)若PQ=PB,求运动时间t的值;(3)若BQ=PQ,求运动时间t的值. 24.(2022•长春一模)如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=4,求▱ABCD的面积. 25.(2021春•梁山县期中)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若∠BDE=15°,求∠DOE;(3)在(2)的条件下,若AB=2,求△BOE的面积. 26.(2021春•阳谷县期末)如图,在△ABC中,O是AC边上一点,过点O作BC的平行线,交∠BCA的平分线于点E,交外角∠ACD的平分线于点F.(1)求证:EO=OF;(2)连接AE,AF,当点O沿AC移动时,四边形AECF是否能成为一个矩形?此时,点O在什么位置?说明理由 27.(2021春•长春期末)如图,将平行四边形ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:AC=BE;(2)若∠AFC=2∠D,连接AC,BE.求证:四边形ABEC是矩形.
相关试卷
这是一份专题5.2 视图(能力提升)-2023-2024学年九年级数学上册《同步考点解读•专题训练》(北师大版),文件包含湖南师大附中数学附中3次pdf、湖南师大附中数学答案附中3次pdf等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
这是一份初中数学北师大版九年级下册2 30°、45°、60°角的三角函数值精品同步练习题,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份专题1.2 矩形的性质与判定(专项训练)-2022-2023学年九年级数学上册《 考点解读•专题训练》(北师大版),共23页。试卷主要包含了cm等内容,欢迎下载使用。