初中数学华师大版九年级上册23.4 中位线优秀精练
展开2022-2023年华师大版数学九年级上册23.4
《中位线》课时练习
一 、选择题
1.如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF周长为( )
A.9 B.10 C.11 D.12
2.如图,已知四边形ABCD是平行四边形,对角线AC,BD相交于点O,E是BC的中点,以下说法错误的是( )
A.2OE=DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE
3.如图,□ABCD中,AB=10,BC=6,E、F分别是AD、DC的中点,若EF=7,则四边形EACF的周长是( )
A.20 B.22 C.29 D.31
4.如图,▱ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为( )
A.3 cm B.6 cm C.9 cm D.12 cm
5.如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接DE.现测得AC=30m,BC=40m,DE=24m,则AB=( )
A.50m B.48m C.45m D.35m
6.如图,EF是△ABC的中位线,将△AEF沿中线AD方向平移到△A1E2F1的位置,使E1F1与BC边重合,已知△AEF的面积为7,则图中阴影部分的面积为( )
A.7 B.14 C.21 D.28
7.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE=( )
A.6 B.5 C.4 D.3
8.如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是( )
A.4 B.3 C.2 D.1
9.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为( )
A.0.5 B.1 C.3.5 D.7
10.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为( )
A.15 B.2 C.2.5 D.3
二 、填空题
11.如图,在△ABC中,点D、E分别是边AB、AC的中点,已知DE=6cm,则BC= cm.
12.如图,已知在△ABC中,D、E分别是AB、AC的中点,F、G分别是AD、AE的中点,且FG=2cm,则BC的长度是 cm.
13.如图,在△ABC中,AB=6cm,AC=10cm,AD平分∠BAC,BD⊥AD于点D,BD的延长线交AC于 点F,E为BC的中点,则DE的长为 cm.
14.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=35°,则∠PFE的度数是 .
15.如图,在四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别在边AB,BC上,点E,F分别为MN,DN的中点,连接EF,则EF长度的最大值为 .
16.如图,已知等边三角形ABC边长为1,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A5B5C5的周长为 .
三 、解答题
17.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24,△OAB的周长是18,试求EF的长.
18.如图,△ABC的中线BE,CF相交于点G,P,Q分别是BG,CG的中点.
(1)求证:四边形EFPQ是平行四边形;
(2)请直接写出BG与GE的数量关系: .(不要求证明)
19.如图,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,∠ABD=20°,∠BDC=70°,求∠PMN的度数.
20.如图所示,在△ABC中,D是边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.
(1)求证:四边形BDEF是平行四边形.
(2)线段BF,AB,AC的数量之间具有怎样的关系?证明你所得到的结论.
21.如图,已知在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.
参考答案
1.A
2.D
3.C
4.B
5.B
6.B
7.D
8.D
9.A
10.C
11.答案为:12.
12.答案为:8.
13.答案为:2;
14.答案为:35°.
15.答案为:3.
16.答案为:.
17.解:∵四边形ABCD是平行四边形
∴AO=CO,BO=DO,
∵AC+BD=24,
∴AO+BO=12,
∵△OAB的周长是18,
∴AB=18﹣(AO+BO)=18﹣12=6,
∵点E,F分别是线段AO,BO的中点
∴EF=3.
18.(1)证明:∵BE,CF是△ABC的中线,
∴EF是△ABC的中位线,
∴EF∥BC且EF=0.5BC.
∵P,Q分别是BG,CG的中点,
∴PQ是△BCG的中位线,
∴PQ∥BC且PQ=0.5BC,
∴EF∥PQ且EF=PQ.
∴四边形EFPQ是平行四边形.
(2)BG=2GE.
19.解:∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,
∴PN,PM分别是△CDB与△DAB的中位线,
∴PM=AB,PN=DC,PM∥AB,PN∥DC,
∵AB=CD,
∴PM=PN,
∴△PMN是等腰三角形,
∵PM∥AB,PN∥DC,
∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,
∴∠MPN=∠MPD+∠NPD=20°+°=130°,
∴∠PMN=25°.
20.解:(1)证明:延长CE交AB于点G,
∵AE⊥CE,
∴∠AEG=∠AEC=90°.
在△AGE和△ACE中,
∵∠GAE=∠CAE,AE=AE,∠AEG=∠AEC
∴△AGE≌△ACE(ASA).
∴GE=EC.
∵BD=CD,
∴DE为△CGB的中位线,
∴DE∥AB.
∵EF∥BC,
∴四边形BDEF是平行四边形.
(2)解:BF=(AB-AC).证明如下:
∵四边形BDEF是平行四边形,
∴BF=DE.
∵D,E分别是BC,GC的中点,
∴BF=DE=0.5BG.
∵△AGE≌△ACE,
∴AG=AC,
∴BF=(AB-AG)=(AB-AC).
21.证明:连接AC,作EM∥AD交AC于M,连接MF.如下图:
∵E是CD的中点,且EM∥AD,
∴EM=AD,M是AC的中点,
又因为F是AB的中点
∴MF∥BC,且MF=BC.
∵AD=BC,
∴EM=MF,三角形MEF为等腰三角形,即∠MEF=∠MFE.
∵EM∥AH,
∴∠MEF=∠AHF
∵FM∥BG,
∴∠MFE=∠BGF
∴∠AHF=∠BGF.
初中数学华师大版九年级上册23.4 中位线复习练习题: 这是一份初中数学华师大版九年级上册23.4 中位线复习练习题,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学华师大版九年级上册23.4 中位线课时训练: 这是一份初中数学华师大版九年级上册23.4 中位线课时训练,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学23.4 中位线同步训练题: 这是一份初中数学23.4 中位线同步训练题,共7页。