第22章+二次函数 选择题-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川)
展开
这是一份第22章+二次函数 选择题-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川),共44页。
第22章 二次函数 选择题-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川)
一.二次函数的性质(共3小题)
1.(2021•阿坝州)二次函数y=ax2+bx+c的图象如图所示,下列说法错误的是( )
A.a<0,b>0
B.b2﹣4ac>0
C.方程ax2+bx+c=0的解是x1=5,x2=﹣1
D.不等式ax2+bx+c>0的解集是0<x<5
2.(2021•雅安)定义:min{a,b}=,若函数y=min{x+1,﹣x2+2x+3},则该函数的最大值为( )
A.0 B.2 C.3 D.4
3.(2020•达州)如图,直线y1=kx与抛物线y2=ax2+bx+c交于A、B两点,则y=ax2+(b﹣k)x+c的图象可能是( )
A. B.
C. D.
二.二次函数图象与系数的关系(共18小题)
4.(2022•资阳)如图是二次函数y=ax2+bx+c的图象,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
5.(2022•绵阳)如图,二次函数y=ax2+bx+c的图象关于直线x=1对称,与x轴交于A(x1,0),B(x2,0)两点.若﹣2<x1<﹣1,则下列四个结论:①3<x2<4;②3a+2b>0;③b2>a+c+4ac;④a>c>b,正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
6.(2022•广安)已知抛物线y=ax2+bx+c的对称轴为x=1,与x轴正半轴的交点为A(3,0),其部分图象如图所示,有下列结论:①abc>0; ②2c﹣3b<0; ③5a+b+2c=0;④若B(,y1)、C(,y2)、D(,y3)是抛物线上的三点,则y1<y2<y3.其中正确结论的个数有( )
A.1 B.2 C.3 D.4
7.(2022•广元)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)abc<0;(2)4a+c>2b;(3)3b﹣2c>0;(4)若点A(﹣2,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)4a+2b≥m(am+b)(m为常数).其中正确的结论有( )
A.5个 B.4个 C.3个 D.2个
8.(2022•凉山州)已知抛物线y=ax2+bx+c经过点(1,0)和点(0,﹣3),且对称轴在y轴的左侧,则下列结论错误的是( )
A.a>0
B.a+b=3
C.抛物线经过点(﹣1,0)
D.关于x的一元二次方程ax2+bx+c=﹣1有两个不相等的实数根
9.(2022•南充)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2﹣2m2x+n(m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为( )
A.0<m≤2 B.﹣2≤m<0 C.m>2 D.m<﹣2
10.(2021•达州)如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),且对称轴为直线x=,有下列结论:①abc>0;②a+b>0;③4a+2b+3c<0;④无论a,b,c取何值,抛物线一定经过(,0);⑤4am2+4bm﹣b≥0.其中正确结论有( )
A.1个 B.2个 C.3个 D.4个
11.(2021•资阳)已知A、B两点的坐标分别为(3,﹣4)、(0,﹣2),线段AB上有一动点M(m,n),过点M作x轴的平行线交抛物线y=a(x﹣1)2+2于P(x1,y1)、Q(x2,y2)两点.若x1<m≤x2,则a的取值范围为( )
A.﹣4≤a<﹣ B.﹣4≤a≤﹣ C.﹣≤a<0 D.﹣<a<0
12.(2021•凉山州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的是( )
A.abc>0 B.函数的最大值为a﹣b+c
C.当﹣3≤x≤1时,y≥0 D.4a﹣2b+c<0
13.(2021•泸州)直线l过点(0,4)且与y轴垂直,若二次函数y=(x﹣a)2+(x﹣2a)2+(x﹣3a)2﹣2a2+a(其中x是自变量)的图象与直线l有两个不同的交点,且其对称轴在y轴右侧,则a的取值范围是( )
A.a>4 B.a>0 C.0<a≤4 D.0<a<4
14.(2020•凉山州)二次函数y=ax2+bx+c的图象如图所示,有如下结论:
①abc>0;
②2a+b=0;
③3b﹣2c<0;
④am2+bm≥a+b(m为实数).
其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
15.(2020•资阳)如图,抛物线y=ax2+bx+c的对称轴是直线x=1,且与x轴、y轴分别交于A、B两点,其中点A在点(3,0)的右侧,直线y=﹣x+c经过A、B两点.给出以下四个结论:①b>0;②c>;③3a+2b+c>0;④<a<0,其中正确的结论是( )
A.①② B.①②③ C.①③④ D.①②③④
16.(2020•广安)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的部分图象如图所示,图象顶点的坐标为(2,1),与x轴的一个交点在点(3,0)和点(4,0)之间,有下列结论:
①abc<0;
②a﹣b+c>0;
③c﹣4a=1;
④b2>4ac;
⑤am2+bm+c≤1(m为任意实数).
其中正确的有( )
A.2个 B.3个 C.4个 D.5个
17.(2020•眉山)已知二次函数y=x2﹣2ax+a2﹣2a﹣4(a为常数)的图象与x轴有交点,且当x>3时,y随x的增大而增大,则a的取值范围是( )
A.a≥﹣2 B.a<3 C.﹣2≤a<3 D.﹣2≤a≤3
18.(2020•泸州)已知二次函数y=x2﹣2bx+2b2﹣4c(其中x是自变量)的图象经过不同两点A(1﹣b,m),B(2b+c,m),且该二次函数的图象与x轴有公共点,则b+c的值为( )
A.﹣1 B.2 C.3 D.4
19.(2020•甘孜州)如图,二次函数y=a(x+1)2+k的图象与x轴交于A(﹣3,0),B两点,下列说法错误的是( )
A.a<0
B.图象的对称轴为直线x=﹣1
C.点B的坐标为(1,0)
D.当x<0时,y随x的增大而增大
20.(2020•遂宁)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=﹣1,下列结论不正确的是( )
A.b2>4ac
B.abc>0
C.a﹣c<0
D.am2+bm≥a﹣b(m为任意实数)
21.(2020•南充)如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3).若抛物线y=ax2的图象与正方形有公共点,则实数a的取值范围是( )
A.≤a≤3 B.≤a≤1 C.≤a≤3 D.≤a≤1
三.二次函数图象上点的坐标特征(共1小题)
22.(2022•达州)二次函数y=ax2+bx+c的部分图象如图所示,与y轴交于(0,﹣1),对称轴为直线x=1.下列结论:①abc>0;②a>;③对于任意实数m,都有m(am+b)>a+b成立;④若(﹣2,y1),(,y2),(2,y3)在该函数图象上,则y3<y2<y1;⑤方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4.其中正确结论有( )个.
A.2 B.3 C.4 D.5
四.二次函数图象与几何变换(共2小题)
23.(2022•泸州)抛物线y=﹣x2+x+1经平移后,不可能得到的抛物线是( )
A.y=﹣x2+x B.y=﹣x2﹣4
C.y=﹣x2+2021x﹣2022 D.y=﹣x2+x+1
24.(2021•眉山)在平面直角坐标系中,抛物线y=x2﹣4x+5与y轴交于点C,则该抛物线关于点C成中心对称的抛物线的表达式为( )
A.y=﹣x2﹣4x+5 B.y=x2+4x+5 C.y=﹣x2+4x﹣5 D.y=﹣x2﹣4x﹣5
五.抛物线与x轴的交点(共9小题)
25.(2022•雅安)抛物线的函数表达式为y=(x﹣2)2﹣9,则下列结论中,正确的序号为( )
①当x=2时,y取得最小值﹣9;②若点(3,y1),(4,y2)在其图象上,则y2>y1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x﹣5)2﹣5;④函数图象与x轴有两个交点,且两交点的距离为6.
A.②③④ B.①②④ C.①③ D.①②③④
26.(2022•成都)如图,二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B两点,对称轴是直线x=1,下列说法正确的是( )
A.a>0
B.当x>﹣1时,y的值随x值的增大而增大
C.点B的坐标为(4,0)
D.4a+2b+c>0
27.(2021•巴中)已知二次函数y=ax2+bx+c的自变量x与函数y的部分对应值见表格,则下列结论:①c=2;②b2﹣4ac>0;③方程ax2+bx=0的两根为x1=﹣2,x2=0;④7a+c<0.其中正确的有( )
x
…
﹣3
﹣2
﹣1
1
2
…
y
…
1.875
3
m
1.875
0
…
A.①④ B.②③ C.③④ D.②④
28.(2021•广元)将二次函数y=﹣x2+2x+3的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示.当直线y=x+b与新函数的图象恰有3个公共点时,b的值为( )
A.或﹣3 B.或﹣3 C.或﹣3 D.或﹣3
29.(2021•遂宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;
②b2<4ac;
③2c<3b;
④a+b>m(am+b)(m≠1);
⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为2.
其中正确的结论有( )
A.2个 B.3个 C.4个 D.5个
30.(2020•南充)关于二次函数y=ax2﹣4ax﹣5(a≠0)的三个结论:①对任意实数m,都有x1=2+m与x2=2﹣m对应的函数值相等;②若3≤x≤4,对应的y的整数值有4个,则﹣<a≤﹣1或1≤a<;③若抛物线与x轴交于不同两点A,B,且AB≤6,则a<﹣或a≥1.其中正确的结论是( )
A.①② B.①③ C.②③ D.①②③
31.(2020•成都)关于二次函数y=x2+2x﹣8,下列说法正确的是( )
A.图象的对称轴在y轴的右侧
B.图象与y轴的交点坐标为(0,8)
C.图象与x轴的交点坐标为(﹣2,0)和(4,0)
D.y的最小值为﹣9
32.(2020•德阳)已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是( )
(1)2a+b=0;
(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;
(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;
(4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是﹣<m<0.
A.1 B.2 C.3 D.4
33.(2020•宜宾)函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.以下结论正确的是( )
①abc>0;
②函数y=ax2+bx+c(a≠0)在x=1和x=﹣2处的函数值相等;
③函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象总有两个不同交点;
④函数y=ax2+bx+c(a≠0)在﹣3≤x≤3内既有最大值又有最小值.
A.①③ B.①②③ C.①④ D.②③④
六.二次函数的应用(共2小题)
34.(2022•自贡)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是( )
A.方案1 B.方案2
C.方案3 D.方案1或方案2
35.(2020•绵阳)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )
A.4米 B.5米 C.2米 D.7米
七.二次函数综合题(共1小题)
36.(2022•自贡)已知A(﹣3,﹣2),B(1,﹣2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:
①c≥﹣2;
②当x>0时,一定有y随x的增大而增大;
③若点D横坐标的最小值为﹣5,则点C横坐标的最大值为3;
④当四边形ABCD为平行四边形时,a=.
其中正确的是( )
A.①③ B.②③ C.①④ D.①③④
第22章 二次函数-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川)
参考答案与试题解析
一.二次函数的性质(共3小题)
1.(2021•阿坝州)二次函数y=ax2+bx+c的图象如图所示,下列说法错误的是( )
A.a<0,b>0
B.b2﹣4ac>0
C.方程ax2+bx+c=0的解是x1=5,x2=﹣1
D.不等式ax2+bx+c>0的解集是0<x<5
【解答】解:由图象可知,抛物线开口向下,所以a<0;对称轴为直线x=﹣=2,所以b=﹣4a,所以b>0,故A正确.
因为抛物线与x轴有两个交点,所以b2﹣4ac>0,故B正确.
由图象和对称轴公式可知,抛物线与x轴交于点(5,0)和(﹣1,0),所以方程ax2+bx+c=0的解是x1=5,x2=﹣1,故C正确.
由图象可知,不等式ax2+bx+c>0的解集是﹣1<x<5,故D错误.
故选:D.
2.(2021•雅安)定义:min{a,b}=,若函数y=min{x+1,﹣x2+2x+3},则该函数的最大值为( )
A.0 B.2 C.3 D.4
【解答】解:x+1=﹣x2+2x+3,
解得x=﹣1或x=2.
∴y=,
把x=2代入y=x+1得y=3,
∴函数最大值为y=3.
故选:C.
3.(2020•达州)如图,直线y1=kx与抛物线y2=ax2+bx+c交于A、B两点,则y=ax2+(b﹣k)x+c的图象可能是( )
A. B.
C. D.
【解答】解:设y=y2﹣y1,
∵y1=kx,y2=ax2+bx+c,
∴y=ax2+(b﹣k)x+c,
由图象可知,在点A和点B之间,y>0,在点A的左侧或点B的右侧,y<0,
故选项B符合题意,选项A、C、D不符合题意;
故选:B.
二.二次函数图象与系数的关系(共18小题)
4.(2022•资阳)如图是二次函数y=ax2+bx+c的图象,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
【解答】解:∵二次函数y=ax2+bx+c的图象,其对称轴为直线x=﹣1,且过点(0,1),
∴,c=1,
∴ab>0,
∴abc>0,故①正确;
从图中可以看出,当x=﹣1时,函数值大于1,
因此将x=﹣1代入得,(﹣1)2⋅a+(﹣1)⋅b+c>1,
即a﹣b+c>1,故②正确;
∵,
∴b=2a,
从图中可以看出,当x=1时,函数值小于0,
∴a+b+c<0,
∴3a+c<0,故③正确;
∵二次函数y=ax2+bx+c的顶点坐标为(﹣1,2),
∴设二次函数的解析式为y=a(x+1)2+2,
将(0,1)代入得,1=a+2,
解得a=﹣1,
∴二次函数的解析式为y=﹣(x+1)2+2,
∴当x=1时,y=﹣2;
∴根据二次函数的对称性,得到﹣3≤m≤﹣1,故④正确;
综上所述,①②③④均正确,故有4个正确结论,
故选A.
5.(2022•绵阳)如图,二次函数y=ax2+bx+c的图象关于直线x=1对称,与x轴交于A(x1,0),B(x2,0)两点.若﹣2<x1<﹣1,则下列四个结论:①3<x2<4;②3a+2b>0;③b2>a+c+4ac;④a>c>b,正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
【解答】解:∵对称轴为直线x=1,﹣2<x1<﹣1,
∴3<x2<4,①正确,
∵﹣=1,
∴b=﹣2a,
∴3a+2b=3a﹣4a=﹣a,
∵a>0,
∴3a+2b<0,②错误;
∵抛物线与x轴有两个交点,
∴b2﹣4ac>0,
由题意可知x=﹣1时,y<0,
∴a﹣b+c<0,
∴a+c<b,
∵a>0,
∴b=﹣2a<0,
∴a+c<0,
∴b2﹣4ac>a+c,
∴b2>a+c+4ac,③正确;
∵抛物线开口向上,与y轴的交点在x轴下方,
∴a>0,c<0,
∴a>c,
∵a﹣b+c<0,b=﹣2a,
∴3a+c<0,
∴c<﹣3a,
∴b=﹣2a,
∴b>c,
所以④错误;
故选:B.
6.(2022•广安)已知抛物线y=ax2+bx+c的对称轴为x=1,与x轴正半轴的交点为A(3,0),其部分图象如图所示,有下列结论:①abc>0; ②2c﹣3b<0; ③5a+b+2c=0;④若B(,y1)、C(,y2)、D(,y3)是抛物线上的三点,则y1<y2<y3.其中正确结论的个数有( )
A.1 B.2 C.3 D.4
【解答】解:∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴是直线x=1,
∴1=﹣,
∴b=﹣2a,
∴b<0,
∵抛物线交y轴于负半轴,
∴c<0,
∴abc>0,故①正确,
∵抛物线y=ax2﹣2ax+c经过(3,0),
∴9a﹣6a+c=0,
∴c=﹣3a,
∴2c﹣3b=﹣6a+6a=0,故②错误,
5a+b+2c=5a﹣2a﹣6a=﹣3a<0,故③错误,
观察图象可知,y1<y2<y3,故④正确,
故选:B.
7.(2022•广元)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)abc<0;(2)4a+c>2b;(3)3b﹣2c>0;(4)若点A(﹣2,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)4a+2b≥m(am+b)(m为常数).其中正确的结论有( )
A.5个 B.4个 C.3个 D.2个
【解答】解:∵抛物线的开口向下,
∴a<0,
∵抛物线的对称轴为直线x=﹣=2,
∴b>0,
∵抛物线交y轴的正半轴,
∴c>0,
∴abc<0,所以(1)正确;
∵对称轴为直线x=2,
∴﹣=2,
∴b=﹣4a,
∴b+4a=0,
∴b=﹣4a,
∵经过点(﹣1,0),
∴a﹣b+c=0,
∴c=b﹣a=﹣4a﹣a=﹣5a,
∴4a+c﹣2b=4a﹣5a+8a=7a,
∵a<0,
∴4a+c﹣2b<0,
∴4a+c<2b,故(2)不正确;
∵3b﹣2c=﹣12a+10a=﹣2a>0,故(3)正确;
∵|﹣2﹣2|=4,|﹣﹣2|=,|﹣2|=,
∴y1<y2<y3,故(4)错误;
当x=2时,函数有最大值4a+2b+c,
∴4a+2b+c≥am2+bm+c,
4a+2b≥m(am+b)(m为常数),故(5)正确;
综上所述:正确的结论有(1)(3)(5),共3个,
故选:C.
8.(2022•凉山州)已知抛物线y=ax2+bx+c经过点(1,0)和点(0,﹣3),且对称轴在y轴的左侧,则下列结论错误的是( )
A.a>0
B.a+b=3
C.抛物线经过点(﹣1,0)
D.关于x的一元二次方程ax2+bx+c=﹣1有两个不相等的实数根
【解答】解:由题意作图如下:
由图知,a>0,
故A选项说法正确,不符合题意,
∵抛物线y=ax2+bx+c经过点(1,0)和点(0,﹣3),
∴a+b+c=0,c=﹣3,
∴a+b=3,
故B选项说法正确,不符合题意,
∵对称轴在y轴的左侧,
∴抛物线不经过(﹣1,0),
故C选项说法错误,符合题意,
由图知,抛物线y=ax2+bx+c与直线y=﹣1有两个交点,故关于x的一元二次方程ax2+bx+c=﹣1有两个不相等的实数根,
故D选项说法正确,不符合题意,
故选:C.
9.(2022•南充)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2﹣2m2x+n(m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为( )
A.0<m≤2 B.﹣2≤m<0 C.m>2 D.m<﹣2
【解答】解:∵抛物线y=mx2﹣2m2x+n(m≠0),
∴该抛物线的对称轴为直线x=﹣=m,
∵当x1+x2>4且x1<x2时,都有y1<y2,
∴当m>0时,
0<2m≤4,
解得0<m≤2;
当m<0时,
2m>4,
此时m无解;
由上可得,m的取值范围为0<m≤2,
故选:A.
10.(2021•达州)如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),且对称轴为直线x=,有下列结论:①abc>0;②a+b>0;③4a+2b+3c<0;④无论a,b,c取何值,抛物线一定经过(,0);⑤4am2+4bm﹣b≥0.其中正确结论有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:①∵抛物线的对称轴为直线x=,即对称轴在y轴的右侧,
∴ab<0,
∵抛物线与y轴交在负半轴上,
∴c<0,
∴abc>0,
故①正确;
②∵抛物线的对称轴为直线x=,
∴﹣=,
∴﹣2b=2a,
∴a+b=0,
故②不正确;
③∵抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),
∴4a+2b+c=0,
∵c<0,
∴4a+2b+3c<0,
故③正确;
④由对称得:抛物线与x轴另一交点为(﹣1,0),
∵,
∴c=﹣2a,
∴=﹣1,
∴当a≠0,无论b,c取何值,抛物线一定经过(,0),
故④正确;
⑤∵b=﹣a,
∴4am2+4bm﹣b=4am2﹣4am+a=a(4m2﹣4m+1)=a(2m﹣1)2,
∵a>0,
∴a(2m﹣1)2≥0,即4am2+4bm﹣b≥0,
故⑤正确;
本题正确的有:①③④⑤,共4个.
故选:D.
11.(2021•资阳)已知A、B两点的坐标分别为(3,﹣4)、(0,﹣2),线段AB上有一动点M(m,n),过点M作x轴的平行线交抛物线y=a(x﹣1)2+2于P(x1,y1)、Q(x2,y2)两点.若x1<m≤x2,则a的取值范围为( )
A.﹣4≤a<﹣ B.﹣4≤a≤﹣ C.﹣≤a<0 D.﹣<a<0
【解答】解:由题意,抛物线的顶点(1,2),
又∵线段AB上有一动点M(m,n),过点M作x轴的平行线交抛物线y=a(x﹣1)2+2于P(x1,y1)、Q(x2,y2)两点.
∴开口向下,
∴a<0,
当抛物线y=a(x﹣1)2+2经过点A(3,﹣4)时,﹣4=4a+2,
∴a=﹣,
观察图象可知,当抛物线与线段AB没有交点或经过点A时,满足条件,
∴﹣≤a<0.
故选:C.
12.(2021•凉山州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的是( )
A.abc>0 B.函数的最大值为a﹣b+c
C.当﹣3≤x≤1时,y≥0 D.4a﹣2b+c<0
【解答】解:∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴为直线x=﹣=﹣1,
∴b=2a<0,
∵抛物线与y轴的交点坐标在x轴上方,
∴c>0,
∴abc>0,所以A不符合题意;
当x=﹣1时,函数的最大值为:a•(﹣1)2+b•(﹣1)+c=a﹣b+c,故B不符合题意;
由图可知,抛物线与x轴的另一交点为(﹣3,0),所以﹣3≤x≤1时,y≥0,故C不符合题意;
当x=﹣2时,y>0,
所以,a•(﹣2)2+b•(﹣2)+c>0,
即4a﹣2b+c>0,故D符合题意,
故选:D.
13.(2021•泸州)直线l过点(0,4)且与y轴垂直,若二次函数y=(x﹣a)2+(x﹣2a)2+(x﹣3a)2﹣2a2+a(其中x是自变量)的图象与直线l有两个不同的交点,且其对称轴在y轴右侧,则a的取值范围是( )
A.a>4 B.a>0 C.0<a≤4 D.0<a<4
【解答】解:∵直线l过点(0,4)且与y轴垂直,
∴直线l为:y=4,
∵二次函数y=(x﹣a)2+(x﹣2a)2+(x﹣3a)2﹣2a2+a的图象与直线l有两个不同的交点,
∴(x﹣a)2+(x﹣2a)2+(x﹣3a)2﹣2a2+a=4,
整理得:3x2﹣12ax+12a2+a﹣4=0,
△=(﹣12a)2﹣4×3(12a2+a﹣4)=144a2﹣144a2﹣12a+48=﹣12a+48>0,
∴a<4,
又∵二次函数y=(x﹣a)2+(x﹣2a)2+(x﹣3a)2﹣2a2+a=3x2﹣12ax+12a2+a对称轴在y轴右侧,
∴﹣=2a>0,
∴a>0,
∴0<a<4,
故选:D.
14.(2020•凉山州)二次函数y=ax2+bx+c的图象如图所示,有如下结论:
①abc>0;
②2a+b=0;
③3b﹣2c<0;
④am2+bm≥a+b(m为实数).
其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
【解答】解:①∵对称轴在y轴右侧,
∴a、b异号,
∴ab<0,
∵c<0,
∴abc>0,
故①正确;
②∵对称轴x=﹣=1,
∴2a+b=0;
故②正确;
③∵2a+b=0,
∴a=﹣b,
∵当x=﹣1时,y=a﹣b+c>0,
∴﹣b﹣b+c>0,
∴3b﹣2c<0,
故③正确;
④根据图象知,当x=1时,y有最小值;
当m为实数时,有am2+bm+c≥a+b+c,
所以am2+bm≥a+b(m为实数).
故④正确.
本题正确的结论有:①②③④,4个;
故选:D.
15.(2020•资阳)如图,抛物线y=ax2+bx+c的对称轴是直线x=1,且与x轴、y轴分别交于A、B两点,其中点A在点(3,0)的右侧,直线y=﹣x+c经过A、B两点.给出以下四个结论:①b>0;②c>;③3a+2b+c>0;④<a<0,其中正确的结论是( )
A.①② B.①②③ C.①③④ D.①②③④
【解答】解:∵抛物线开口向下,
∴a<0,
∵﹣=1,
∴b=﹣2a>0,故①正确;
∵直线y=﹣x+c经过点A,点A在点(3,0)的右侧,
∴﹣+c>0,
∴c>,故②正确;
∵a<0,c>0,b=﹣2a,
∴3a+2b+c=3a﹣4a+c=﹣a+c>0,故③正确;
由图象可知,当x=3时,9a+3b+c>﹣+c,
∴9a+3b>﹣,
∴3a>﹣,
∴a>﹣,
∴<a<0,故④正确;
故选:D.
16.(2020•广安)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的部分图象如图所示,图象顶点的坐标为(2,1),与x轴的一个交点在点(3,0)和点(4,0)之间,有下列结论:
①abc<0;
②a﹣b+c>0;
③c﹣4a=1;
④b2>4ac;
⑤am2+bm+c≤1(m为任意实数).
其中正确的有( )
A.2个 B.3个 C.4个 D.5个
【解答】解:由图象可知,抛物线开口向下,对称轴在y轴的右侧,与y轴的交点在y轴的负半轴,
∴a<0,b>0,c<0,
∴abc>0,故①错误;
由图象可知,x=﹣1时,y<0,
∴a﹣b+c<0,故②错误;
∵抛物线的顶点坐标为(2,1),
∴﹣=2,b=﹣4a,
∵4a+2b+c=1,
∴4a﹣8a+c=1,即c﹣4a=1,故③正确;
∵抛物线与x轴有两个交点,
∴Δ>0,
∴b2﹣4ac>0,即b2>4ac,故④正确.
∵抛物线的开口向下,顶点坐标为(2,1),
∴am2+bm+c≤1(m为任意实数),故⑤正确.
故选:B.
17.(2020•眉山)已知二次函数y=x2﹣2ax+a2﹣2a﹣4(a为常数)的图象与x轴有交点,且当x>3时,y随x的增大而增大,则a的取值范围是( )
A.a≥﹣2 B.a<3 C.﹣2≤a<3 D.﹣2≤a≤3
【解答】解:∵二次函数y=x2﹣2ax+a2﹣2a﹣4(a为常数)的图象与x轴有交点,
∴△=(﹣2a)2﹣4×1×(a2﹣2a﹣4)≥0
解得:a≥﹣2;
∵抛物线的对称轴为直线x=﹣=a,抛物线开口向上,且当x>3时,y随x的增大而增大,
∴a≤3,
∴实数a的取值范围是﹣2≤a≤3.
故选:D.
18.(2020•泸州)已知二次函数y=x2﹣2bx+2b2﹣4c(其中x是自变量)的图象经过不同两点A(1﹣b,m),B(2b+c,m),且该二次函数的图象与x轴有公共点,则b+c的值为( )
A.﹣1 B.2 C.3 D.4
【解答】解:由二次函数y=x2﹣2bx+2b2﹣4c的图象与x轴有公共点,
∴(﹣2b)2﹣4×1×(2b2﹣4c)≥0,即b2﹣4c≤0 ①,
由抛物线的对称轴x=﹣=b,抛物线经过不同两点A(1﹣b,m),B(2b+c,m),
b=,即,c=b﹣1 ②,
②代入①得,b2﹣4(b﹣1)≤0,即(b﹣2)2≤0,因此b=2,
c=b﹣1=2﹣1=1,
∴b+c=2+1=3,
故选:C.
19.(2020•甘孜州)如图,二次函数y=a(x+1)2+k的图象与x轴交于A(﹣3,0),B两点,下列说法错误的是( )
A.a<0
B.图象的对称轴为直线x=﹣1
C.点B的坐标为(1,0)
D.当x<0时,y随x的增大而增大
【解答】解:观察图象可知a<0,由抛物线的解析式可知对称轴x=﹣1,
∵A(﹣3,0),A,B关于x=﹣1对称,
∴B(1,0),
故A,B,C正确,
∵当﹣1<x<0时,y随x的增大而减小,
∴选项D错误.
故选:D.
20.(2020•遂宁)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=﹣1,下列结论不正确的是( )
A.b2>4ac
B.abc>0
C.a﹣c<0
D.am2+bm≥a﹣b(m为任意实数)
【解答】解:由图象可得:a>0,c>0,Δ=b2﹣4ac>0,﹣=﹣1,
∴b=2a>0,b2>4ac,故A选项不合题意,
∴abc>0,故B选项不合题意,
当x=﹣1时,y<0,
∴a﹣b+c<0,
∴﹣a+c<0,即a﹣c>0,故C选项符合题意,
当x=m时,y=am2+bm+c,
当x=﹣1时,y有最小值为a﹣b+c,
∴am2+bm+c≥a﹣b+c,
∴am2+bm≥a﹣b,故D选项不合题意,
故选:C.
21.(2020•南充)如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3).若抛物线y=ax2的图象与正方形有公共点,则实数a的取值范围是( )
A.≤a≤3 B.≤a≤1 C.≤a≤3 D.≤a≤1
【解答】解:设抛物线的解析式为y=ax2,
当抛物线经过(1,3)时,a=3,
当抛物线经过(3,1)时,a=,
观察图象可知≤a≤3,
故选:A.
三.二次函数图象上点的坐标特征(共1小题)
22.(2022•达州)二次函数y=ax2+bx+c的部分图象如图所示,与y轴交于(0,﹣1),对称轴为直线x=1.下列结论:①abc>0;②a>;③对于任意实数m,都有m(am+b)>a+b成立;④若(﹣2,y1),(,y2),(2,y3)在该函数图象上,则y3<y2<y1;⑤方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4.其中正确结论有( )个.
A.2 B.3 C.4 D.5
【解答】解:∵抛物线开口向上,
∴a>0,
∴抛物线与y轴交于点(0,﹣1),
∴c=﹣1,
∵﹣=1,
∴b=﹣2a<0,
∴abc>0,故①正确,
∵y=ax2﹣2ax﹣1,
当x=﹣1时,y>0,
∴a+2a﹣1>0,
∴a>,故②正确,
当m=1时,m(am+b)=a+b,故③错误,
∵点(﹣2,y1)到对称轴的距离大于点(2,y3)到对称轴的距离,
∴y1>y3,
∵点(,y2)到对称轴的距离小于点(2,y3)到对称轴的距离,
∴y3>y2,
∴y2<y3<y1,故④错误,
∵方程|ax2+bx+c|=k(k≥0,k为常数)的解,是抛物线与直线y=±k的交点,
当有3个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,
当有4个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,
当有2个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为2,故⑤错误,
故选:A.
四.二次函数图象与几何变换(共2小题)
23.(2022•泸州)抛物线y=﹣x2+x+1经平移后,不可能得到的抛物线是( )
A.y=﹣x2+x B.y=﹣x2﹣4
C.y=﹣x2+2021x﹣2022 D.y=﹣x2+x+1
【解答】解:∵将抛物线y=﹣x2+x+1经过平移后开口方向不变,开口大小也不变,
∴抛物线y=﹣x2+x+1经过平移后不可能得到的抛物线是y=﹣x2+x+1.
故选:D.
24.(2021•眉山)在平面直角坐标系中,抛物线y=x2﹣4x+5与y轴交于点C,则该抛物线关于点C成中心对称的抛物线的表达式为( )
A.y=﹣x2﹣4x+5 B.y=x2+4x+5 C.y=﹣x2+4x﹣5 D.y=﹣x2﹣4x﹣5
【解答】解:由抛物线y=x2﹣4x+5=(x﹣2)²+1知,抛物线顶点坐标是(2,1).
由抛物线y=x2﹣4x+5知,C(0,5).
∴该抛物线关于点C成中心对称的抛物线的顶点坐标是(﹣2,9).
∴该抛物线关于点C成中心对称的抛物线的表达式为:y=﹣(x+2)²+9=﹣x²﹣4x+5.
故选:A.
五.抛物线与x轴的交点(共9小题)
25.(2022•雅安)抛物线的函数表达式为y=(x﹣2)2﹣9,则下列结论中,正确的序号为( )
①当x=2时,y取得最小值﹣9;②若点(3,y1),(4,y2)在其图象上,则y2>y1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x﹣5)2﹣5;④函数图象与x轴有两个交点,且两交点的距离为6.
A.②③④ B.①②④ C.①③ D.①②③④
【解答】解:∵y=(x﹣2)2﹣9,
∴抛物线对称轴为直线x=2,抛物线开口向上,顶点坐标为(2,﹣9),
∴x=2时,y取最小值﹣9,①正确.
∵x>2时,y随x增大而增大,
∴y2>y1,②正确.
将函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x+1)2﹣5,③错误.
令(x﹣2)2﹣9=0,
解得x1=﹣1,x2=5,
∴5﹣(﹣1)=6,④正确.
故选:B.
26.(2022•成都)如图,二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B两点,对称轴是直线x=1,下列说法正确的是( )
A.a>0
B.当x>﹣1时,y的值随x值的增大而增大
C.点B的坐标为(4,0)
D.4a+2b+c>0
【解答】解:A、由图可知:抛物线开口向下,a<0,故选项A错误,不符合题意;
B、∵抛物线对称轴是直线x=1,开口向下,
∴当x>1时y随x的增大而减小,x<1时y随x的增大而增大,故选项B错误,不符合题意;
C、由A(﹣1,0),抛物线对称轴是直线x=1可知,B坐标为(3,0),故选项C错误,不符合题意;
D、抛物线y=ax2+bx+c过点(2,4a+2b+c),由B(3,0)可知:抛物线上横坐标为2的点在第一象限,
∴4a+2b+c>0,故选项D正确,符合题意;
故选:D.
27.(2021•巴中)已知二次函数y=ax2+bx+c的自变量x与函数y的部分对应值见表格,则下列结论:①c=2;②b2﹣4ac>0;③方程ax2+bx=0的两根为x1=﹣2,x2=0;④7a+c<0.其中正确的有( )
x
…
﹣3
﹣2
﹣1
1
2
…
y
…
1.875
3
m
1.875
0
…
A.①④ B.②③ C.③④ D.②④
【解答】解:由表格可以得到,二次函数图象经过点(﹣3,1.875)和点(1,1.875),
∵点(﹣3,1.875)与点(1,1.875)是关于二次函数对称轴对称的,
∴二次函数的对称轴为直线x==﹣1,
∴设二次函数解析式为y=a(x+1)2+h,
代入点(﹣2,3),(2,0)得,
,
解得,
∴二次函数的解析式为:,
∵,
∴c=3,
∴①是错误的,
∵b2﹣4ac=>0,
∴②是正确的,
方程ax2+bx=0为,
即为x2+2x=0,
∴x1=﹣2,x2=0,
∴③是正确的,
∵7a+c==>0,
∴④是错误的,
∴②③是正确的,
故选:B.
28.(2021•广元)将二次函数y=﹣x2+2x+3的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示.当直线y=x+b与新函数的图象恰有3个公共点时,b的值为( )
A.或﹣3 B.或﹣3 C.或﹣3 D.或﹣3
【解答】解:二次函数解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴抛物线y=﹣x2+2x+3的顶点坐标为(1,4),
当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,
则抛物线y=﹣x2+2x+3与x轴的交点为A(﹣1,0),B(3,0),
把抛物线y=﹣x2+2x+3图象x轴上方的部分沿x轴翻折到x轴下方,则翻折部分的抛物线解析式为y=(x﹣1)2﹣4(﹣1≤x≤3),顶点坐标M(1,﹣4),
如图,当直线y=x+b过点B时,直线y=x+b与该新图象恰好有三个公共点,
∴3+b=0,解得b=﹣3;
当直线y=x+b与抛物线y=(x﹣1)2﹣4(﹣1≤x≤3)相切时,直线y=x+b与该新图象恰好有三个公共点,
即(x﹣1)2﹣4=x+b有相等的实数解,整理得x2﹣3x﹣b﹣3=0,△=32﹣4(﹣b﹣3)=0,解得b=﹣,
所以b的值为﹣3或﹣,
故选:A.
29.(2021•遂宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;
②b2<4ac;
③2c<3b;
④a+b>m(am+b)(m≠1);
⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为2.
其中正确的结论有( )
A.2个 B.3个 C.4个 D.5个
【解答】解:①二次函数图象性质知,开口向下,则a<0.再结合对称轴>0,得b>0.据二次函数图象与y轴正半轴相交得c>0.
∴abc<0.
①错.
②二次函数图象与x轴交于不同两点,则b2﹣4ac>0.
∴b2>4ac.
②错.
③∵,
∴b=﹣2a.
又当x=﹣1时,y<0.
即a﹣b+c<0.
∴2a﹣2b+2c<0.
∴﹣3b+2c<0.
2c<3b.
∴③正确.
④∵x=1时函数有最大值,
∴当x=1时的y值大于当x=m(m≠1)时的y值,
即a+b+c>m(am+b)+c
∴a+b>m(am+b)(m≠1)成立,
∴④正确.
⑤将x轴下方二次函数图象翻折到x轴上方,则与直线y=1有四个交点即可.
由二次函数图象的轴对称性知:关于对称轴对称的两个根的和为2,四个根的和为4.故⑤错.
综上:③④正确,故选:A.
30.(2020•南充)关于二次函数y=ax2﹣4ax﹣5(a≠0)的三个结论:①对任意实数m,都有x1=2+m与x2=2﹣m对应的函数值相等;②若3≤x≤4,对应的y的整数值有4个,则﹣<a≤﹣1或1≤a<;③若抛物线与x轴交于不同两点A,B,且AB≤6,则a<﹣或a≥1.其中正确的结论是( )
A.①② B.①③ C.②③ D.①②③
【解答】解:∵二次函数y=ax2﹣4ax﹣5的对称轴为直线x=﹣,
∴x1=2+m与x2=2﹣m关于直线x=2对称,
∴对任意实数m,都有x1=2+m与x2=2﹣m对应的函数值相等;
故①正确;
当x=3时,y=﹣3a﹣5,当x=4时,y=﹣5,
若a>0时,当3≤x≤4时,﹣3a﹣5≤y≤﹣5,
∵当3≤x≤4时,对应的y的整数值有4个,分别是﹣5,﹣6,﹣7,﹣8,
∴﹣9<﹣3a﹣5≤﹣8
∴1≤a<,
若a<0时,当3≤x≤4时,﹣5≤y≤﹣3a﹣5,
∵当3≤x≤4时,对应的y的整数值有4个,分别是﹣5,﹣4,﹣3,﹣2,
∴﹣2≤﹣3a﹣5<﹣1
∴﹣<a≤﹣1,
故②正确;
若a>0,抛物线与x轴交于不同两点A,B,且AB≤6,
∴Δ>0,当x=5时,25a﹣20a﹣5≥0,
∴,
∴a≥1,
若a<0,抛物线与x轴交于不同两点A,B,且AB≤6,
∴Δ>0,当x=5时,25a﹣20a﹣5≤0,
∴,
∴a<﹣,
综上所述:当a<﹣或a≥1时,抛物线与x轴交于不同两点A,B,且AB≤6.
故选:D.
31.(2020•成都)关于二次函数y=x2+2x﹣8,下列说法正确的是( )
A.图象的对称轴在y轴的右侧
B.图象与y轴的交点坐标为(0,8)
C.图象与x轴的交点坐标为(﹣2,0)和(4,0)
D.y的最小值为﹣9
【解答】解:∵二次函数y=x2+2x﹣8=(x+1)2﹣9=(x+4)(x﹣2),
∴该函数的对称轴是直线x=﹣1,在y轴的左侧,故选项A错误;
当x=0时,y=﹣8,即该函数与y轴交于点(0,﹣8),故选项B错误;
当y=0时,x=2或x=﹣4,即图象与x轴的交点坐标为(2,0)和(﹣4,0),故选项C错误;
当x=﹣1时,该函数取得最小值y=﹣9,故选项D正确;
故选:D.
32.(2020•德阳)已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是( )
(1)2a+b=0;
(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;
(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;
(4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是﹣<m<0.
A.1 B.2 C.3 D.4
【解答】解:(1)∵不等式ax+b>0的解集为x<2,
∴a<0,﹣=2,即b=﹣2a,
∴2a+b=0,故结论正确;
(2)函数y=ax2+bx+c中,令y=0,则ax2+bx+c=0,
∵即b=﹣2a,
∴Δ=b2﹣4ac=(﹣2a)2﹣4ac=4a(a﹣c),
∵a<0,c>a,
∴△=4a(a﹣c)>0,
∴当c>a时,函数y=ax2+bx+c的图象与x轴有两个公共点,故结论错误;
(3)∵b=﹣2a,
∴﹣=1,==c﹣a,
∴抛物线y=ax2+bx+c的顶点为(1,c﹣a),
当x=1时,直线y=ax+b=a+b=a﹣2a=﹣a>0
当c>0时,c﹣a>﹣a>0,
∴抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方,故结论正确;
(4)∵b=﹣2a,
∴由2a﹣mb﹣m=0,得到﹣b﹣mb﹣m=0,
∴b=﹣,
如果b<3,则0<﹣<3,
∴﹣<m<0,故结论正确;
故选:C.
33.(2020•宜宾)函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.以下结论正确的是( )
①abc>0;
②函数y=ax2+bx+c(a≠0)在x=1和x=﹣2处的函数值相等;
③函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象总有两个不同交点;
④函数y=ax2+bx+c(a≠0)在﹣3≤x≤3内既有最大值又有最小值.
A.①③ B.①②③ C.①④ D.②③④
【解答】解:依照题意,画出图形如下:
∵函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.
∴a<0,c>0,对称轴为x=﹣=﹣1,
∴b=2a<0,
∴abc>0,故①正确,
∵对称轴为x=﹣1,
∴x=1与x=﹣3的函数值是相等的,故②错误;
∵顶点为(﹣1,n),
∴抛物线解析式为;y=a(x+1)2+n=ax2+2ax+a+n,
联立方程组可得:,
可得ax2+(2a﹣k)x+a+n﹣1=0,
∴△=(2a﹣k)2﹣4a(a+n﹣1)=k2﹣4ak+4a﹣4an,
∵无法判断△是否大于0,
∴无法判断函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象的交点个数,故③错误;
当﹣3≤x≤3时,
当x=﹣1时,y有最大值为n,当x=3时,y有最小值为16a+n,故④正确,
故选:C.
六.二次函数的应用(共2小题)
34.(2022•自贡)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是( )
A.方案1 B.方案2
C.方案3 D.方案1或方案2
【解答】解:方案1:设AD=x米,则AB=(8﹣2x)米,
则菜园面积=x(8﹣2x)=﹣2x2+8x=﹣2(x﹣2)2+8,
当x=2时,此时菜园最大面积为8米2;
方案2:当∠BAC=90°时,菜园最大面积=×4×4=8米2;
方案3:半圆的半径=米,
∴此时菜园最大面积==米2>8米2;
故选:C.
35.(2020•绵阳)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )
A.4米 B.5米 C.2米 D.7米
【解答】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,
设大孔所在抛物线解析式为y=ax2+,
∵BC=10,
∴点B(﹣5,0),
∴0=a×(﹣5)2+,
∴a=﹣,
∴大孔所在抛物线解析式为y=﹣x2+,
设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,
∵EF=14,
∴点E的横坐标为﹣7,
∴点E坐标为(﹣7,﹣),
∴﹣=m(x﹣b)2,
∴x1=+b,x2=﹣+b,
∴MN=4,
∴|+b﹣(﹣+b)|=4
∴m=﹣,
∴顶点为A的小孔所在抛物线的解析式为y=﹣(x﹣b)2,
∵大孔水面宽度为20米,
∴当x=﹣10时,y=﹣,
∴﹣=﹣(x﹣b)2,
∴x1=+b,x2=﹣+b,
∴单个小孔的水面宽度=|(+b)﹣(﹣+b)|=5(米),
故选:B.
七.二次函数综合题(共1小题)
36.(2022•自贡)已知A(﹣3,﹣2),B(1,﹣2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:
①c≥﹣2;
②当x>0时,一定有y随x的增大而增大;
③若点D横坐标的最小值为﹣5,则点C横坐标的最大值为3;
④当四边形ABCD为平行四边形时,a=.
其中正确的是( )
A.①③ B.②③ C.①④ D.①③④
【解答】解:∵点A,B的坐标分别为(﹣3,﹣2)和(1,﹣2),
∴线段AB与y轴的交点坐标为(0,﹣2),
又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c),
∴c≥﹣2,(顶点在y轴上时取“=”),故①正确;
∵抛物线的顶点在线段AB上运动,开口向上,
∴当x>1时,一定有y随x的增大而增大,故②错误;
若点D的横坐标最小值为﹣5,则此时对称轴为直线x=﹣3,C点的横坐标为﹣1,则CD=4,
∵抛物线形状不变,当对称轴为直线x=1时,C点的横坐标为3,
∴点C的横坐标最大值为3,故③正确;
令y=0,则ax2+bx+c=0,
CD2=(﹣)2﹣4×=,
根据顶点坐标公式,=﹣2,
∴=﹣8,即=8,
∴CD2=×8=,
∵四边形ACDB为平行四边形,
∴CD=AB=1﹣(﹣3)=4,
∴=42=16,
解得a=,故④正确;
综上所述,正确的结论有①③④.
故选:D.
相关试卷
这是一份第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共26页。
这是一份第22章+二次函数选择题-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共27页。试卷主要包含了,其对称轴为直线x=1等内容,欢迎下载使用。
这是一份第1章二次函数(选择题)-【浙教版-中考真题】九年级数学上学期期末复习培优练习(浙江),共17页。