搜索
    上传资料 赚现金
    英语朗读宝

    第22章+二次函数 选择题-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川)

    第22章+二次函数 选择题-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川)第1页
    第22章+二次函数 选择题-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川)第2页
    第22章+二次函数 选择题-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川)第3页
    还剩41页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第22章+二次函数 选择题-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川)

    展开

    这是一份第22章+二次函数 选择题-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川),共44页。
    第22章 二次函数 选择题-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川)
    一.二次函数的性质(共3小题)
    1.(2021•阿坝州)二次函数y=ax2+bx+c的图象如图所示,下列说法错误的是(  )

    A.a<0,b>0
    B.b2﹣4ac>0
    C.方程ax2+bx+c=0的解是x1=5,x2=﹣1
    D.不等式ax2+bx+c>0的解集是0<x<5
    2.(2021•雅安)定义:min{a,b}=,若函数y=min{x+1,﹣x2+2x+3},则该函数的最大值为(  )
    A.0 B.2 C.3 D.4
    3.(2020•达州)如图,直线y1=kx与抛物线y2=ax2+bx+c交于A、B两点,则y=ax2+(b﹣k)x+c的图象可能是(  )

    A. B.
    C. D.
    二.二次函数图象与系数的关系(共18小题)
    4.(2022•资阳)如图是二次函数y=ax2+bx+c的图象,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是(  )

    A.4个 B.3个 C.2个 D.1个
    5.(2022•绵阳)如图,二次函数y=ax2+bx+c的图象关于直线x=1对称,与x轴交于A(x1,0),B(x2,0)两点.若﹣2<x1<﹣1,则下列四个结论:①3<x2<4;②3a+2b>0;③b2>a+c+4ac;④a>c>b,正确结论的个数为(  )

    A.1个 B.2个 C.3个 D.4个
    6.(2022•广安)已知抛物线y=ax2+bx+c的对称轴为x=1,与x轴正半轴的交点为A(3,0),其部分图象如图所示,有下列结论:①abc>0; ②2c﹣3b<0; ③5a+b+2c=0;④若B(,y1)、C(,y2)、D(,y3)是抛物线上的三点,则y1<y2<y3.其中正确结论的个数有(  )

    A.1 B.2 C.3 D.4
    7.(2022•广元)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)abc<0;(2)4a+c>2b;(3)3b﹣2c>0;(4)若点A(﹣2,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)4a+2b≥m(am+b)(m为常数).其中正确的结论有(  )

    A.5个 B.4个 C.3个 D.2个
    8.(2022•凉山州)已知抛物线y=ax2+bx+c经过点(1,0)和点(0,﹣3),且对称轴在y轴的左侧,则下列结论错误的是(  )
    A.a>0
    B.a+b=3
    C.抛物线经过点(﹣1,0)
    D.关于x的一元二次方程ax2+bx+c=﹣1有两个不相等的实数根
    9.(2022•南充)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2﹣2m2x+n(m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为(  )
    A.0<m≤2 B.﹣2≤m<0 C.m>2 D.m<﹣2
    10.(2021•达州)如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),且对称轴为直线x=,有下列结论:①abc>0;②a+b>0;③4a+2b+3c<0;④无论a,b,c取何值,抛物线一定经过(,0);⑤4am2+4bm﹣b≥0.其中正确结论有(  )

    A.1个 B.2个 C.3个 D.4个
    11.(2021•资阳)已知A、B两点的坐标分别为(3,﹣4)、(0,﹣2),线段AB上有一动点M(m,n),过点M作x轴的平行线交抛物线y=a(x﹣1)2+2于P(x1,y1)、Q(x2,y2)两点.若x1<m≤x2,则a的取值范围为(  )
    A.﹣4≤a<﹣ B.﹣4≤a≤﹣ C.﹣≤a<0 D.﹣<a<0
    12.(2021•凉山州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的是(  )

    A.abc>0 B.函数的最大值为a﹣b+c
    C.当﹣3≤x≤1时,y≥0 D.4a﹣2b+c<0
    13.(2021•泸州)直线l过点(0,4)且与y轴垂直,若二次函数y=(x﹣a)2+(x﹣2a)2+(x﹣3a)2﹣2a2+a(其中x是自变量)的图象与直线l有两个不同的交点,且其对称轴在y轴右侧,则a的取值范围是(  )
    A.a>4 B.a>0 C.0<a≤4 D.0<a<4
    14.(2020•凉山州)二次函数y=ax2+bx+c的图象如图所示,有如下结论:
    ①abc>0;
    ②2a+b=0;
    ③3b﹣2c<0;
    ④am2+bm≥a+b(m为实数).
    其中正确结论的个数是(  )

    A.1个 B.2个 C.3个 D.4个
    15.(2020•资阳)如图,抛物线y=ax2+bx+c的对称轴是直线x=1,且与x轴、y轴分别交于A、B两点,其中点A在点(3,0)的右侧,直线y=﹣x+c经过A、B两点.给出以下四个结论:①b>0;②c>;③3a+2b+c>0;④<a<0,其中正确的结论是(  )

    A.①② B.①②③ C.①③④ D.①②③④
    16.(2020•广安)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的部分图象如图所示,图象顶点的坐标为(2,1),与x轴的一个交点在点(3,0)和点(4,0)之间,有下列结论:
    ①abc<0;
    ②a﹣b+c>0;
    ③c﹣4a=1;
    ④b2>4ac;
    ⑤am2+bm+c≤1(m为任意实数).
    其中正确的有(  )

    A.2个 B.3个 C.4个 D.5个
    17.(2020•眉山)已知二次函数y=x2﹣2ax+a2﹣2a﹣4(a为常数)的图象与x轴有交点,且当x>3时,y随x的增大而增大,则a的取值范围是(  )
    A.a≥﹣2 B.a<3 C.﹣2≤a<3 D.﹣2≤a≤3
    18.(2020•泸州)已知二次函数y=x2﹣2bx+2b2﹣4c(其中x是自变量)的图象经过不同两点A(1﹣b,m),B(2b+c,m),且该二次函数的图象与x轴有公共点,则b+c的值为(  )
    A.﹣1 B.2 C.3 D.4
    19.(2020•甘孜州)如图,二次函数y=a(x+1)2+k的图象与x轴交于A(﹣3,0),B两点,下列说法错误的是(  )

    A.a<0
    B.图象的对称轴为直线x=﹣1
    C.点B的坐标为(1,0)
    D.当x<0时,y随x的增大而增大
    20.(2020•遂宁)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=﹣1,下列结论不正确的是(  )

    A.b2>4ac
    B.abc>0
    C.a﹣c<0
    D.am2+bm≥a﹣b(m为任意实数)
    21.(2020•南充)如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3).若抛物线y=ax2的图象与正方形有公共点,则实数a的取值范围是(  )

    A.≤a≤3 B.≤a≤1 C.≤a≤3 D.≤a≤1
    三.二次函数图象上点的坐标特征(共1小题)
    22.(2022•达州)二次函数y=ax2+bx+c的部分图象如图所示,与y轴交于(0,﹣1),对称轴为直线x=1.下列结论:①abc>0;②a>;③对于任意实数m,都有m(am+b)>a+b成立;④若(﹣2,y1),(,y2),(2,y3)在该函数图象上,则y3<y2<y1;⑤方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4.其中正确结论有(  )个.

    A.2 B.3 C.4 D.5
    四.二次函数图象与几何变换(共2小题)
    23.(2022•泸州)抛物线y=﹣x2+x+1经平移后,不可能得到的抛物线是(  )
    A.y=﹣x2+x B.y=﹣x2﹣4
    C.y=﹣x2+2021x﹣2022 D.y=﹣x2+x+1
    24.(2021•眉山)在平面直角坐标系中,抛物线y=x2﹣4x+5与y轴交于点C,则该抛物线关于点C成中心对称的抛物线的表达式为(  )
    A.y=﹣x2﹣4x+5 B.y=x2+4x+5 C.y=﹣x2+4x﹣5 D.y=﹣x2﹣4x﹣5
    五.抛物线与x轴的交点(共9小题)
    25.(2022•雅安)抛物线的函数表达式为y=(x﹣2)2﹣9,则下列结论中,正确的序号为(  )
    ①当x=2时,y取得最小值﹣9;②若点(3,y1),(4,y2)在其图象上,则y2>y1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x﹣5)2﹣5;④函数图象与x轴有两个交点,且两交点的距离为6.
    A.②③④ B.①②④ C.①③ D.①②③④
    26.(2022•成都)如图,二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B两点,对称轴是直线x=1,下列说法正确的是(  )

    A.a>0
    B.当x>﹣1时,y的值随x值的增大而增大
    C.点B的坐标为(4,0)
    D.4a+2b+c>0
    27.(2021•巴中)已知二次函数y=ax2+bx+c的自变量x与函数y的部分对应值见表格,则下列结论:①c=2;②b2﹣4ac>0;③方程ax2+bx=0的两根为x1=﹣2,x2=0;④7a+c<0.其中正确的有(  )
    x

    ﹣3
    ﹣2
    ﹣1
    1
    2

    y

    1.875
    3
    m
    1.875
    0

    A.①④ B.②③ C.③④ D.②④
    28.(2021•广元)将二次函数y=﹣x2+2x+3的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示.当直线y=x+b与新函数的图象恰有3个公共点时,b的值为(  )

    A.或﹣3 B.或﹣3 C.或﹣3 D.或﹣3
    29.(2021•遂宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
    ①abc>0;
    ②b2<4ac;
    ③2c<3b;
    ④a+b>m(am+b)(m≠1);
    ⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为2.
    其中正确的结论有(  )

    A.2个 B.3个 C.4个 D.5个
    30.(2020•南充)关于二次函数y=ax2﹣4ax﹣5(a≠0)的三个结论:①对任意实数m,都有x1=2+m与x2=2﹣m对应的函数值相等;②若3≤x≤4,对应的y的整数值有4个,则﹣<a≤﹣1或1≤a<;③若抛物线与x轴交于不同两点A,B,且AB≤6,则a<﹣或a≥1.其中正确的结论是(  )
    A.①② B.①③ C.②③ D.①②③
    31.(2020•成都)关于二次函数y=x2+2x﹣8,下列说法正确的是(  )
    A.图象的对称轴在y轴的右侧
    B.图象与y轴的交点坐标为(0,8)
    C.图象与x轴的交点坐标为(﹣2,0)和(4,0)
    D.y的最小值为﹣9
    32.(2020•德阳)已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是(  )
    (1)2a+b=0;
    (2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;
    (3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;
    (4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是﹣<m<0.
    A.1 B.2 C.3 D.4
    33.(2020•宜宾)函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.以下结论正确的是(  )
    ①abc>0;
    ②函数y=ax2+bx+c(a≠0)在x=1和x=﹣2处的函数值相等;
    ③函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象总有两个不同交点;
    ④函数y=ax2+bx+c(a≠0)在﹣3≤x≤3内既有最大值又有最小值.
    A.①③ B.①②③ C.①④ D.②③④
    六.二次函数的应用(共2小题)
    34.(2022•自贡)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是(  )

    A.方案1 B.方案2
    C.方案3 D.方案1或方案2
    35.(2020•绵阳)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为(  )

    A.4米 B.5米 C.2米 D.7米
    七.二次函数综合题(共1小题)
    36.(2022•自贡)已知A(﹣3,﹣2),B(1,﹣2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:
    ①c≥﹣2;
    ②当x>0时,一定有y随x的增大而增大;
    ③若点D横坐标的最小值为﹣5,则点C横坐标的最大值为3;
    ④当四边形ABCD为平行四边形时,a=.
    其中正确的是(  )
    A.①③ B.②③ C.①④ D.①③④

    第22章 二次函数-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川)
    参考答案与试题解析
    一.二次函数的性质(共3小题)
    1.(2021•阿坝州)二次函数y=ax2+bx+c的图象如图所示,下列说法错误的是(  )

    A.a<0,b>0
    B.b2﹣4ac>0
    C.方程ax2+bx+c=0的解是x1=5,x2=﹣1
    D.不等式ax2+bx+c>0的解集是0<x<5
    【解答】解:由图象可知,抛物线开口向下,所以a<0;对称轴为直线x=﹣=2,所以b=﹣4a,所以b>0,故A正确.
    因为抛物线与x轴有两个交点,所以b2﹣4ac>0,故B正确.
    由图象和对称轴公式可知,抛物线与x轴交于点(5,0)和(﹣1,0),所以方程ax2+bx+c=0的解是x1=5,x2=﹣1,故C正确.
    由图象可知,不等式ax2+bx+c>0的解集是﹣1<x<5,故D错误.
    故选:D.
    2.(2021•雅安)定义:min{a,b}=,若函数y=min{x+1,﹣x2+2x+3},则该函数的最大值为(  )
    A.0 B.2 C.3 D.4
    【解答】解:x+1=﹣x2+2x+3,
    解得x=﹣1或x=2.

    ∴y=,
    把x=2代入y=x+1得y=3,
    ∴函数最大值为y=3.
    故选:C.
    3.(2020•达州)如图,直线y1=kx与抛物线y2=ax2+bx+c交于A、B两点,则y=ax2+(b﹣k)x+c的图象可能是(  )

    A. B.
    C. D.
    【解答】解:设y=y2﹣y1,
    ∵y1=kx,y2=ax2+bx+c,
    ∴y=ax2+(b﹣k)x+c,
    由图象可知,在点A和点B之间,y>0,在点A的左侧或点B的右侧,y<0,
    故选项B符合题意,选项A、C、D不符合题意;
    故选:B.
    二.二次函数图象与系数的关系(共18小题)
    4.(2022•资阳)如图是二次函数y=ax2+bx+c的图象,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是(  )

    A.4个 B.3个 C.2个 D.1个
    【解答】解:∵二次函数y=ax2+bx+c的图象,其对称轴为直线x=﹣1,且过点(0,1),
    ∴,c=1,
    ∴ab>0,
    ∴abc>0,故①正确;
    从图中可以看出,当x=﹣1时,函数值大于1,
    因此将x=﹣1代入得,(﹣1)2⋅a+(﹣1)⋅b+c>1,
    即a﹣b+c>1,故②正确;
    ∵,
    ∴b=2a,
    从图中可以看出,当x=1时,函数值小于0,
    ∴a+b+c<0,
    ∴3a+c<0,故③正确;
    ∵二次函数y=ax2+bx+c的顶点坐标为(﹣1,2),
    ∴设二次函数的解析式为y=a(x+1)2+2,
    将(0,1)代入得,1=a+2,
    解得a=﹣1,
    ∴二次函数的解析式为y=﹣(x+1)2+2,
    ∴当x=1时,y=﹣2;
    ∴根据二次函数的对称性,得到﹣3≤m≤﹣1,故④正确;
    综上所述,①②③④均正确,故有4个正确结论,
    故选A.
    5.(2022•绵阳)如图,二次函数y=ax2+bx+c的图象关于直线x=1对称,与x轴交于A(x1,0),B(x2,0)两点.若﹣2<x1<﹣1,则下列四个结论:①3<x2<4;②3a+2b>0;③b2>a+c+4ac;④a>c>b,正确结论的个数为(  )

    A.1个 B.2个 C.3个 D.4个
    【解答】解:∵对称轴为直线x=1,﹣2<x1<﹣1,
    ∴3<x2<4,①正确,
    ∵﹣=1,
    ∴b=﹣2a,
    ∴3a+2b=3a﹣4a=﹣a,
    ∵a>0,
    ∴3a+2b<0,②错误;
    ∵抛物线与x轴有两个交点,
    ∴b2﹣4ac>0,
    由题意可知x=﹣1时,y<0,
    ∴a﹣b+c<0,
    ∴a+c<b,
    ∵a>0,
    ∴b=﹣2a<0,
    ∴a+c<0,
    ∴b2﹣4ac>a+c,
    ∴b2>a+c+4ac,③正确;
    ∵抛物线开口向上,与y轴的交点在x轴下方,
    ∴a>0,c<0,
    ∴a>c,
    ∵a﹣b+c<0,b=﹣2a,
    ∴3a+c<0,
    ∴c<﹣3a,
    ∴b=﹣2a,
    ∴b>c,
    所以④错误;
    故选:B.
    6.(2022•广安)已知抛物线y=ax2+bx+c的对称轴为x=1,与x轴正半轴的交点为A(3,0),其部分图象如图所示,有下列结论:①abc>0; ②2c﹣3b<0; ③5a+b+2c=0;④若B(,y1)、C(,y2)、D(,y3)是抛物线上的三点,则y1<y2<y3.其中正确结论的个数有(  )

    A.1 B.2 C.3 D.4
    【解答】解:∵抛物线开口向上,
    ∴a>0,
    ∵抛物线的对称轴是直线x=1,
    ∴1=﹣,
    ∴b=﹣2a,
    ∴b<0,
    ∵抛物线交y轴于负半轴,
    ∴c<0,
    ∴abc>0,故①正确,
    ∵抛物线y=ax2﹣2ax+c经过(3,0),
    ∴9a﹣6a+c=0,
    ∴c=﹣3a,
    ∴2c﹣3b=﹣6a+6a=0,故②错误,
    5a+b+2c=5a﹣2a﹣6a=﹣3a<0,故③错误,
    观察图象可知,y1<y2<y3,故④正确,

    故选:B.
    7.(2022•广元)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)abc<0;(2)4a+c>2b;(3)3b﹣2c>0;(4)若点A(﹣2,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)4a+2b≥m(am+b)(m为常数).其中正确的结论有(  )

    A.5个 B.4个 C.3个 D.2个
    【解答】解:∵抛物线的开口向下,
    ∴a<0,
    ∵抛物线的对称轴为直线x=﹣=2,
    ∴b>0,
    ∵抛物线交y轴的正半轴,
    ∴c>0,
    ∴abc<0,所以(1)正确;
    ∵对称轴为直线x=2,
    ∴﹣=2,
    ∴b=﹣4a,
    ∴b+4a=0,
    ∴b=﹣4a,
    ∵经过点(﹣1,0),
    ∴a﹣b+c=0,
    ∴c=b﹣a=﹣4a﹣a=﹣5a,
    ∴4a+c﹣2b=4a﹣5a+8a=7a,
    ∵a<0,
    ∴4a+c﹣2b<0,
    ∴4a+c<2b,故(2)不正确;
    ∵3b﹣2c=﹣12a+10a=﹣2a>0,故(3)正确;
    ∵|﹣2﹣2|=4,|﹣﹣2|=,|﹣2|=,
    ∴y1<y2<y3,故(4)错误;
    当x=2时,函数有最大值4a+2b+c,
    ∴4a+2b+c≥am2+bm+c,
    4a+2b≥m(am+b)(m为常数),故(5)正确;
    综上所述:正确的结论有(1)(3)(5),共3个,
    故选:C.
    8.(2022•凉山州)已知抛物线y=ax2+bx+c经过点(1,0)和点(0,﹣3),且对称轴在y轴的左侧,则下列结论错误的是(  )
    A.a>0
    B.a+b=3
    C.抛物线经过点(﹣1,0)
    D.关于x的一元二次方程ax2+bx+c=﹣1有两个不相等的实数根
    【解答】解:由题意作图如下:

    由图知,a>0,
    故A选项说法正确,不符合题意,
    ∵抛物线y=ax2+bx+c经过点(1,0)和点(0,﹣3),
    ∴a+b+c=0,c=﹣3,
    ∴a+b=3,
    故B选项说法正确,不符合题意,
    ∵对称轴在y轴的左侧,
    ∴抛物线不经过(﹣1,0),
    故C选项说法错误,符合题意,
    由图知,抛物线y=ax2+bx+c与直线y=﹣1有两个交点,故关于x的一元二次方程ax2+bx+c=﹣1有两个不相等的实数根,
    故D选项说法正确,不符合题意,
    故选:C.
    9.(2022•南充)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2﹣2m2x+n(m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为(  )
    A.0<m≤2 B.﹣2≤m<0 C.m>2 D.m<﹣2
    【解答】解:∵抛物线y=mx2﹣2m2x+n(m≠0),
    ∴该抛物线的对称轴为直线x=﹣=m,
    ∵当x1+x2>4且x1<x2时,都有y1<y2,
    ∴当m>0时,
    0<2m≤4,
    解得0<m≤2;
    当m<0时,
    2m>4,
    此时m无解;
    由上可得,m的取值范围为0<m≤2,
    故选:A.
    10.(2021•达州)如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),且对称轴为直线x=,有下列结论:①abc>0;②a+b>0;③4a+2b+3c<0;④无论a,b,c取何值,抛物线一定经过(,0);⑤4am2+4bm﹣b≥0.其中正确结论有(  )

    A.1个 B.2个 C.3个 D.4个
    【解答】解:①∵抛物线的对称轴为直线x=,即对称轴在y轴的右侧,
    ∴ab<0,
    ∵抛物线与y轴交在负半轴上,
    ∴c<0,
    ∴abc>0,
    故①正确;
    ②∵抛物线的对称轴为直线x=,
    ∴﹣=,
    ∴﹣2b=2a,
    ∴a+b=0,
    故②不正确;
    ③∵抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),
    ∴4a+2b+c=0,
    ∵c<0,
    ∴4a+2b+3c<0,
    故③正确;
    ④由对称得:抛物线与x轴另一交点为(﹣1,0),
    ∵,
    ∴c=﹣2a,
    ∴=﹣1,
    ∴当a≠0,无论b,c取何值,抛物线一定经过(,0),
    故④正确;
    ⑤∵b=﹣a,
    ∴4am2+4bm﹣b=4am2﹣4am+a=a(4m2﹣4m+1)=a(2m﹣1)2,
    ∵a>0,
    ∴a(2m﹣1)2≥0,即4am2+4bm﹣b≥0,
    故⑤正确;
    本题正确的有:①③④⑤,共4个.
    故选:D.
    11.(2021•资阳)已知A、B两点的坐标分别为(3,﹣4)、(0,﹣2),线段AB上有一动点M(m,n),过点M作x轴的平行线交抛物线y=a(x﹣1)2+2于P(x1,y1)、Q(x2,y2)两点.若x1<m≤x2,则a的取值范围为(  )
    A.﹣4≤a<﹣ B.﹣4≤a≤﹣ C.﹣≤a<0 D.﹣<a<0
    【解答】解:由题意,抛物线的顶点(1,2),
    又∵线段AB上有一动点M(m,n),过点M作x轴的平行线交抛物线y=a(x﹣1)2+2于P(x1,y1)、Q(x2,y2)两点.
    ∴开口向下,
    ∴a<0,

    当抛物线y=a(x﹣1)2+2经过点A(3,﹣4)时,﹣4=4a+2,
    ∴a=﹣,
    观察图象可知,当抛物线与线段AB没有交点或经过点A时,满足条件,
    ∴﹣≤a<0.
    故选:C.
    12.(2021•凉山州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的是(  )

    A.abc>0 B.函数的最大值为a﹣b+c
    C.当﹣3≤x≤1时,y≥0 D.4a﹣2b+c<0
    【解答】解:∵抛物线开口向下,
    ∴a<0,
    ∵抛物线的对称轴为直线x=﹣=﹣1,
    ∴b=2a<0,
    ∵抛物线与y轴的交点坐标在x轴上方,
    ∴c>0,
    ∴abc>0,所以A不符合题意;
    当x=﹣1时,函数的最大值为:a•(﹣1)2+b•(﹣1)+c=a﹣b+c,故B不符合题意;
    由图可知,抛物线与x轴的另一交点为(﹣3,0),所以﹣3≤x≤1时,y≥0,故C不符合题意;
    当x=﹣2时,y>0,
    所以,a•(﹣2)2+b•(﹣2)+c>0,
    即4a﹣2b+c>0,故D符合题意,
    故选:D.
    13.(2021•泸州)直线l过点(0,4)且与y轴垂直,若二次函数y=(x﹣a)2+(x﹣2a)2+(x﹣3a)2﹣2a2+a(其中x是自变量)的图象与直线l有两个不同的交点,且其对称轴在y轴右侧,则a的取值范围是(  )
    A.a>4 B.a>0 C.0<a≤4 D.0<a<4
    【解答】解:∵直线l过点(0,4)且与y轴垂直,
    ∴直线l为:y=4,
    ∵二次函数y=(x﹣a)2+(x﹣2a)2+(x﹣3a)2﹣2a2+a的图象与直线l有两个不同的交点,
    ∴(x﹣a)2+(x﹣2a)2+(x﹣3a)2﹣2a2+a=4,
    整理得:3x2﹣12ax+12a2+a﹣4=0,
    △=(﹣12a)2﹣4×3(12a2+a﹣4)=144a2﹣144a2﹣12a+48=﹣12a+48>0,
    ∴a<4,
    又∵二次函数y=(x﹣a)2+(x﹣2a)2+(x﹣3a)2﹣2a2+a=3x2﹣12ax+12a2+a对称轴在y轴右侧,
    ∴﹣=2a>0,
    ∴a>0,
    ∴0<a<4,
    故选:D.
    14.(2020•凉山州)二次函数y=ax2+bx+c的图象如图所示,有如下结论:
    ①abc>0;
    ②2a+b=0;
    ③3b﹣2c<0;
    ④am2+bm≥a+b(m为实数).
    其中正确结论的个数是(  )

    A.1个 B.2个 C.3个 D.4个
    【解答】解:①∵对称轴在y轴右侧,
    ∴a、b异号,
    ∴ab<0,
    ∵c<0,
    ∴abc>0,
    故①正确;
    ②∵对称轴x=﹣=1,
    ∴2a+b=0;
    故②正确;
    ③∵2a+b=0,
    ∴a=﹣b,
    ∵当x=﹣1时,y=a﹣b+c>0,
    ∴﹣b﹣b+c>0,
    ∴3b﹣2c<0,
    故③正确;
    ④根据图象知,当x=1时,y有最小值;
    当m为实数时,有am2+bm+c≥a+b+c,
    所以am2+bm≥a+b(m为实数).
    故④正确.
    本题正确的结论有:①②③④,4个;
    故选:D.
    15.(2020•资阳)如图,抛物线y=ax2+bx+c的对称轴是直线x=1,且与x轴、y轴分别交于A、B两点,其中点A在点(3,0)的右侧,直线y=﹣x+c经过A、B两点.给出以下四个结论:①b>0;②c>;③3a+2b+c>0;④<a<0,其中正确的结论是(  )

    A.①② B.①②③ C.①③④ D.①②③④
    【解答】解:∵抛物线开口向下,
    ∴a<0,
    ∵﹣=1,
    ∴b=﹣2a>0,故①正确;
    ∵直线y=﹣x+c经过点A,点A在点(3,0)的右侧,
    ∴﹣+c>0,
    ∴c>,故②正确;
    ∵a<0,c>0,b=﹣2a,
    ∴3a+2b+c=3a﹣4a+c=﹣a+c>0,故③正确;
    由图象可知,当x=3时,9a+3b+c>﹣+c,
    ∴9a+3b>﹣,
    ∴3a>﹣,
    ∴a>﹣,
    ∴<a<0,故④正确;
    故选:D.
    16.(2020•广安)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的部分图象如图所示,图象顶点的坐标为(2,1),与x轴的一个交点在点(3,0)和点(4,0)之间,有下列结论:
    ①abc<0;
    ②a﹣b+c>0;
    ③c﹣4a=1;
    ④b2>4ac;
    ⑤am2+bm+c≤1(m为任意实数).
    其中正确的有(  )

    A.2个 B.3个 C.4个 D.5个
    【解答】解:由图象可知,抛物线开口向下,对称轴在y轴的右侧,与y轴的交点在y轴的负半轴,
    ∴a<0,b>0,c<0,
    ∴abc>0,故①错误;
    由图象可知,x=﹣1时,y<0,
    ∴a﹣b+c<0,故②错误;
    ∵抛物线的顶点坐标为(2,1),
    ∴﹣=2,b=﹣4a,
    ∵4a+2b+c=1,
    ∴4a﹣8a+c=1,即c﹣4a=1,故③正确;
    ∵抛物线与x轴有两个交点,
    ∴Δ>0,
    ∴b2﹣4ac>0,即b2>4ac,故④正确.
    ∵抛物线的开口向下,顶点坐标为(2,1),
    ∴am2+bm+c≤1(m为任意实数),故⑤正确.
    故选:B.
    17.(2020•眉山)已知二次函数y=x2﹣2ax+a2﹣2a﹣4(a为常数)的图象与x轴有交点,且当x>3时,y随x的增大而增大,则a的取值范围是(  )
    A.a≥﹣2 B.a<3 C.﹣2≤a<3 D.﹣2≤a≤3
    【解答】解:∵二次函数y=x2﹣2ax+a2﹣2a﹣4(a为常数)的图象与x轴有交点,
    ∴△=(﹣2a)2﹣4×1×(a2﹣2a﹣4)≥0
    解得:a≥﹣2;
    ∵抛物线的对称轴为直线x=﹣=a,抛物线开口向上,且当x>3时,y随x的增大而增大,
    ∴a≤3,
    ∴实数a的取值范围是﹣2≤a≤3.
    故选:D.
    18.(2020•泸州)已知二次函数y=x2﹣2bx+2b2﹣4c(其中x是自变量)的图象经过不同两点A(1﹣b,m),B(2b+c,m),且该二次函数的图象与x轴有公共点,则b+c的值为(  )
    A.﹣1 B.2 C.3 D.4
    【解答】解:由二次函数y=x2﹣2bx+2b2﹣4c的图象与x轴有公共点,
    ∴(﹣2b)2﹣4×1×(2b2﹣4c)≥0,即b2﹣4c≤0 ①,
    由抛物线的对称轴x=﹣=b,抛物线经过不同两点A(1﹣b,m),B(2b+c,m),
    b=,即,c=b﹣1 ②,
    ②代入①得,b2﹣4(b﹣1)≤0,即(b﹣2)2≤0,因此b=2,
    c=b﹣1=2﹣1=1,
    ∴b+c=2+1=3,
    故选:C.
    19.(2020•甘孜州)如图,二次函数y=a(x+1)2+k的图象与x轴交于A(﹣3,0),B两点,下列说法错误的是(  )

    A.a<0
    B.图象的对称轴为直线x=﹣1
    C.点B的坐标为(1,0)
    D.当x<0时,y随x的增大而增大
    【解答】解:观察图象可知a<0,由抛物线的解析式可知对称轴x=﹣1,
    ∵A(﹣3,0),A,B关于x=﹣1对称,
    ∴B(1,0),
    故A,B,C正确,
    ∵当﹣1<x<0时,y随x的增大而减小,
    ∴选项D错误.
    故选:D.
    20.(2020•遂宁)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=﹣1,下列结论不正确的是(  )

    A.b2>4ac
    B.abc>0
    C.a﹣c<0
    D.am2+bm≥a﹣b(m为任意实数)
    【解答】解:由图象可得:a>0,c>0,Δ=b2﹣4ac>0,﹣=﹣1,
    ∴b=2a>0,b2>4ac,故A选项不合题意,
    ∴abc>0,故B选项不合题意,
    当x=﹣1时,y<0,
    ∴a﹣b+c<0,
    ∴﹣a+c<0,即a﹣c>0,故C选项符合题意,
    当x=m时,y=am2+bm+c,
    当x=﹣1时,y有最小值为a﹣b+c,
    ∴am2+bm+c≥a﹣b+c,
    ∴am2+bm≥a﹣b,故D选项不合题意,
    故选:C.
    21.(2020•南充)如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3).若抛物线y=ax2的图象与正方形有公共点,则实数a的取值范围是(  )

    A.≤a≤3 B.≤a≤1 C.≤a≤3 D.≤a≤1
    【解答】解:设抛物线的解析式为y=ax2,
    当抛物线经过(1,3)时,a=3,
    当抛物线经过(3,1)时,a=,
    观察图象可知≤a≤3,
    故选:A.
    三.二次函数图象上点的坐标特征(共1小题)
    22.(2022•达州)二次函数y=ax2+bx+c的部分图象如图所示,与y轴交于(0,﹣1),对称轴为直线x=1.下列结论:①abc>0;②a>;③对于任意实数m,都有m(am+b)>a+b成立;④若(﹣2,y1),(,y2),(2,y3)在该函数图象上,则y3<y2<y1;⑤方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4.其中正确结论有(  )个.

    A.2 B.3 C.4 D.5
    【解答】解:∵抛物线开口向上,
    ∴a>0,
    ∴抛物线与y轴交于点(0,﹣1),
    ∴c=﹣1,
    ∵﹣=1,
    ∴b=﹣2a<0,
    ∴abc>0,故①正确,
    ∵y=ax2﹣2ax﹣1,
    当x=﹣1时,y>0,
    ∴a+2a﹣1>0,
    ∴a>,故②正确,
    当m=1时,m(am+b)=a+b,故③错误,
    ∵点(﹣2,y1)到对称轴的距离大于点(2,y3)到对称轴的距离,
    ∴y1>y3,
    ∵点(,y2)到对称轴的距离小于点(2,y3)到对称轴的距离,
    ∴y3>y2,
    ∴y2<y3<y1,故④错误,
    ∵方程|ax2+bx+c|=k(k≥0,k为常数)的解,是抛物线与直线y=±k的交点,
    当有3个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,
    当有4个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,
    当有2个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为2,故⑤错误,
    故选:A.

    四.二次函数图象与几何变换(共2小题)
    23.(2022•泸州)抛物线y=﹣x2+x+1经平移后,不可能得到的抛物线是(  )
    A.y=﹣x2+x B.y=﹣x2﹣4
    C.y=﹣x2+2021x﹣2022 D.y=﹣x2+x+1
    【解答】解:∵将抛物线y=﹣x2+x+1经过平移后开口方向不变,开口大小也不变,
    ∴抛物线y=﹣x2+x+1经过平移后不可能得到的抛物线是y=﹣x2+x+1.
    故选:D.
    24.(2021•眉山)在平面直角坐标系中,抛物线y=x2﹣4x+5与y轴交于点C,则该抛物线关于点C成中心对称的抛物线的表达式为(  )
    A.y=﹣x2﹣4x+5 B.y=x2+4x+5 C.y=﹣x2+4x﹣5 D.y=﹣x2﹣4x﹣5
    【解答】解:由抛物线y=x2﹣4x+5=(x﹣2)²+1知,抛物线顶点坐标是(2,1).
    由抛物线y=x2﹣4x+5知,C(0,5).
    ∴该抛物线关于点C成中心对称的抛物线的顶点坐标是(﹣2,9).
    ∴该抛物线关于点C成中心对称的抛物线的表达式为:y=﹣(x+2)²+9=﹣x²﹣4x+5.
    故选:A.
    五.抛物线与x轴的交点(共9小题)
    25.(2022•雅安)抛物线的函数表达式为y=(x﹣2)2﹣9,则下列结论中,正确的序号为(  )
    ①当x=2时,y取得最小值﹣9;②若点(3,y1),(4,y2)在其图象上,则y2>y1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x﹣5)2﹣5;④函数图象与x轴有两个交点,且两交点的距离为6.
    A.②③④ B.①②④ C.①③ D.①②③④
    【解答】解:∵y=(x﹣2)2﹣9,
    ∴抛物线对称轴为直线x=2,抛物线开口向上,顶点坐标为(2,﹣9),
    ∴x=2时,y取最小值﹣9,①正确.
    ∵x>2时,y随x增大而增大,
    ∴y2>y1,②正确.
    将函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x+1)2﹣5,③错误.
    令(x﹣2)2﹣9=0,
    解得x1=﹣1,x2=5,
    ∴5﹣(﹣1)=6,④正确.
    故选:B.
    26.(2022•成都)如图,二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B两点,对称轴是直线x=1,下列说法正确的是(  )

    A.a>0
    B.当x>﹣1时,y的值随x值的增大而增大
    C.点B的坐标为(4,0)
    D.4a+2b+c>0
    【解答】解:A、由图可知:抛物线开口向下,a<0,故选项A错误,不符合题意;
    B、∵抛物线对称轴是直线x=1,开口向下,
    ∴当x>1时y随x的增大而减小,x<1时y随x的增大而增大,故选项B错误,不符合题意;
    C、由A(﹣1,0),抛物线对称轴是直线x=1可知,B坐标为(3,0),故选项C错误,不符合题意;
    D、抛物线y=ax2+bx+c过点(2,4a+2b+c),由B(3,0)可知:抛物线上横坐标为2的点在第一象限,
    ∴4a+2b+c>0,故选项D正确,符合题意;
    故选:D.
    27.(2021•巴中)已知二次函数y=ax2+bx+c的自变量x与函数y的部分对应值见表格,则下列结论:①c=2;②b2﹣4ac>0;③方程ax2+bx=0的两根为x1=﹣2,x2=0;④7a+c<0.其中正确的有(  )
    x

    ﹣3
    ﹣2
    ﹣1
    1
    2

    y

    1.875
    3
    m
    1.875
    0

    A.①④ B.②③ C.③④ D.②④
    【解答】解:由表格可以得到,二次函数图象经过点(﹣3,1.875)和点(1,1.875),
    ∵点(﹣3,1.875)与点(1,1.875)是关于二次函数对称轴对称的,
    ∴二次函数的对称轴为直线x==﹣1,
    ∴设二次函数解析式为y=a(x+1)2+h,
    代入点(﹣2,3),(2,0)得,

    解得,
    ∴二次函数的解析式为:,
    ∵,
    ∴c=3,
    ∴①是错误的,
    ∵b2﹣4ac=>0,
    ∴②是正确的,
    方程ax2+bx=0为,
    即为x2+2x=0,
    ∴x1=﹣2,x2=0,
    ∴③是正确的,
    ∵7a+c==>0,
    ∴④是错误的,
    ∴②③是正确的,
    故选:B.
    28.(2021•广元)将二次函数y=﹣x2+2x+3的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示.当直线y=x+b与新函数的图象恰有3个公共点时,b的值为(  )

    A.或﹣3 B.或﹣3 C.或﹣3 D.或﹣3
    【解答】解:二次函数解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴抛物线y=﹣x2+2x+3的顶点坐标为(1,4),
    当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,
    则抛物线y=﹣x2+2x+3与x轴的交点为A(﹣1,0),B(3,0),
    把抛物线y=﹣x2+2x+3图象x轴上方的部分沿x轴翻折到x轴下方,则翻折部分的抛物线解析式为y=(x﹣1)2﹣4(﹣1≤x≤3),顶点坐标M(1,﹣4),
    如图,当直线y=x+b过点B时,直线y=x+b与该新图象恰好有三个公共点,
    ∴3+b=0,解得b=﹣3;
    当直线y=x+b与抛物线y=(x﹣1)2﹣4(﹣1≤x≤3)相切时,直线y=x+b与该新图象恰好有三个公共点,
    即(x﹣1)2﹣4=x+b有相等的实数解,整理得x2﹣3x﹣b﹣3=0,△=32﹣4(﹣b﹣3)=0,解得b=﹣,
    所以b的值为﹣3或﹣,
    故选:A.

    29.(2021•遂宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
    ①abc>0;
    ②b2<4ac;
    ③2c<3b;
    ④a+b>m(am+b)(m≠1);
    ⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为2.
    其中正确的结论有(  )

    A.2个 B.3个 C.4个 D.5个
    【解答】解:①二次函数图象性质知,开口向下,则a<0.再结合对称轴>0,得b>0.据二次函数图象与y轴正半轴相交得c>0.
    ∴abc<0.
    ①错.
    ②二次函数图象与x轴交于不同两点,则b2﹣4ac>0.
    ∴b2>4ac.
    ②错.
    ③∵,
    ∴b=﹣2a.
    又当x=﹣1时,y<0.
    即a﹣b+c<0.
    ∴2a﹣2b+2c<0.
    ∴﹣3b+2c<0.
    2c<3b.
    ∴③正确.
    ④∵x=1时函数有最大值,
    ∴当x=1时的y值大于当x=m(m≠1)时的y值,
    即a+b+c>m(am+b)+c
    ∴a+b>m(am+b)(m≠1)成立,
    ∴④正确.
    ⑤将x轴下方二次函数图象翻折到x轴上方,则与直线y=1有四个交点即可.
    由二次函数图象的轴对称性知:关于对称轴对称的两个根的和为2,四个根的和为4.故⑤错.
    综上:③④正确,故选:A.
    30.(2020•南充)关于二次函数y=ax2﹣4ax﹣5(a≠0)的三个结论:①对任意实数m,都有x1=2+m与x2=2﹣m对应的函数值相等;②若3≤x≤4,对应的y的整数值有4个,则﹣<a≤﹣1或1≤a<;③若抛物线与x轴交于不同两点A,B,且AB≤6,则a<﹣或a≥1.其中正确的结论是(  )
    A.①② B.①③ C.②③ D.①②③
    【解答】解:∵二次函数y=ax2﹣4ax﹣5的对称轴为直线x=﹣,
    ∴x1=2+m与x2=2﹣m关于直线x=2对称,
    ∴对任意实数m,都有x1=2+m与x2=2﹣m对应的函数值相等;
    故①正确;
    当x=3时,y=﹣3a﹣5,当x=4时,y=﹣5,
    若a>0时,当3≤x≤4时,﹣3a﹣5≤y≤﹣5,
    ∵当3≤x≤4时,对应的y的整数值有4个,分别是﹣5,﹣6,﹣7,﹣8,
    ∴﹣9<﹣3a﹣5≤﹣8
    ∴1≤a<,
    若a<0时,当3≤x≤4时,﹣5≤y≤﹣3a﹣5,
    ∵当3≤x≤4时,对应的y的整数值有4个,分别是﹣5,﹣4,﹣3,﹣2,
    ∴﹣2≤﹣3a﹣5<﹣1
    ∴﹣<a≤﹣1,
    故②正确;
    若a>0,抛物线与x轴交于不同两点A,B,且AB≤6,
    ∴Δ>0,当x=5时,25a﹣20a﹣5≥0,
    ∴,
    ∴a≥1,
    若a<0,抛物线与x轴交于不同两点A,B,且AB≤6,
    ∴Δ>0,当x=5时,25a﹣20a﹣5≤0,
    ∴,
    ∴a<﹣,
    综上所述:当a<﹣或a≥1时,抛物线与x轴交于不同两点A,B,且AB≤6.
    故选:D.
    31.(2020•成都)关于二次函数y=x2+2x﹣8,下列说法正确的是(  )
    A.图象的对称轴在y轴的右侧
    B.图象与y轴的交点坐标为(0,8)
    C.图象与x轴的交点坐标为(﹣2,0)和(4,0)
    D.y的最小值为﹣9
    【解答】解:∵二次函数y=x2+2x﹣8=(x+1)2﹣9=(x+4)(x﹣2),
    ∴该函数的对称轴是直线x=﹣1,在y轴的左侧,故选项A错误;
    当x=0时,y=﹣8,即该函数与y轴交于点(0,﹣8),故选项B错误;
    当y=0时,x=2或x=﹣4,即图象与x轴的交点坐标为(2,0)和(﹣4,0),故选项C错误;
    当x=﹣1时,该函数取得最小值y=﹣9,故选项D正确;
    故选:D.
    32.(2020•德阳)已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是(  )
    (1)2a+b=0;
    (2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;
    (3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;
    (4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是﹣<m<0.
    A.1 B.2 C.3 D.4
    【解答】解:(1)∵不等式ax+b>0的解集为x<2,
    ∴a<0,﹣=2,即b=﹣2a,
    ∴2a+b=0,故结论正确;
    (2)函数y=ax2+bx+c中,令y=0,则ax2+bx+c=0,
    ∵即b=﹣2a,
    ∴Δ=b2﹣4ac=(﹣2a)2﹣4ac=4a(a﹣c),
    ∵a<0,c>a,
    ∴△=4a(a﹣c)>0,
    ∴当c>a时,函数y=ax2+bx+c的图象与x轴有两个公共点,故结论错误;
    (3)∵b=﹣2a,
    ∴﹣=1,==c﹣a,
    ∴抛物线y=ax2+bx+c的顶点为(1,c﹣a),
    当x=1时,直线y=ax+b=a+b=a﹣2a=﹣a>0
    当c>0时,c﹣a>﹣a>0,
    ∴抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方,故结论正确;
    (4)∵b=﹣2a,
    ∴由2a﹣mb﹣m=0,得到﹣b﹣mb﹣m=0,
    ∴b=﹣,
    如果b<3,则0<﹣<3,
    ∴﹣<m<0,故结论正确;
    故选:C.
    33.(2020•宜宾)函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.以下结论正确的是(  )
    ①abc>0;
    ②函数y=ax2+bx+c(a≠0)在x=1和x=﹣2处的函数值相等;
    ③函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象总有两个不同交点;
    ④函数y=ax2+bx+c(a≠0)在﹣3≤x≤3内既有最大值又有最小值.
    A.①③ B.①②③ C.①④ D.②③④
    【解答】解:依照题意,画出图形如下:

    ∵函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.
    ∴a<0,c>0,对称轴为x=﹣=﹣1,
    ∴b=2a<0,
    ∴abc>0,故①正确,
    ∵对称轴为x=﹣1,
    ∴x=1与x=﹣3的函数值是相等的,故②错误;
    ∵顶点为(﹣1,n),
    ∴抛物线解析式为;y=a(x+1)2+n=ax2+2ax+a+n,
    联立方程组可得:,
    可得ax2+(2a﹣k)x+a+n﹣1=0,
    ∴△=(2a﹣k)2﹣4a(a+n﹣1)=k2﹣4ak+4a﹣4an,
    ∵无法判断△是否大于0,
    ∴无法判断函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象的交点个数,故③错误;
    当﹣3≤x≤3时,
    当x=﹣1时,y有最大值为n,当x=3时,y有最小值为16a+n,故④正确,
    故选:C.
    六.二次函数的应用(共2小题)
    34.(2022•自贡)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是(  )

    A.方案1 B.方案2
    C.方案3 D.方案1或方案2
    【解答】解:方案1:设AD=x米,则AB=(8﹣2x)米,

    则菜园面积=x(8﹣2x)=﹣2x2+8x=﹣2(x﹣2)2+8,
    当x=2时,此时菜园最大面积为8米2;
    方案2:当∠BAC=90°时,菜园最大面积=×4×4=8米2;

    方案3:半圆的半径=米,
    ∴此时菜园最大面积==米2>8米2;
    故选:C.
    35.(2020•绵阳)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为(  )

    A.4米 B.5米 C.2米 D.7米
    【解答】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,

    设大孔所在抛物线解析式为y=ax2+,
    ∵BC=10,
    ∴点B(﹣5,0),
    ∴0=a×(﹣5)2+,
    ∴a=﹣,
    ∴大孔所在抛物线解析式为y=﹣x2+,
    设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,
    ∵EF=14,
    ∴点E的横坐标为﹣7,
    ∴点E坐标为(﹣7,﹣),
    ∴﹣=m(x﹣b)2,
    ∴x1=+b,x2=﹣+b,
    ∴MN=4,
    ∴|+b﹣(﹣+b)|=4
    ∴m=﹣,
    ∴顶点为A的小孔所在抛物线的解析式为y=﹣(x﹣b)2,
    ∵大孔水面宽度为20米,
    ∴当x=﹣10时,y=﹣,
    ∴﹣=﹣(x﹣b)2,
    ∴x1=+b,x2=﹣+b,
    ∴单个小孔的水面宽度=|(+b)﹣(﹣+b)|=5(米),
    故选:B.
    七.二次函数综合题(共1小题)
    36.(2022•自贡)已知A(﹣3,﹣2),B(1,﹣2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:
    ①c≥﹣2;
    ②当x>0时,一定有y随x的增大而增大;
    ③若点D横坐标的最小值为﹣5,则点C横坐标的最大值为3;
    ④当四边形ABCD为平行四边形时,a=.
    其中正确的是(  )
    A.①③ B.②③ C.①④ D.①③④
    【解答】解:∵点A,B的坐标分别为(﹣3,﹣2)和(1,﹣2),
    ∴线段AB与y轴的交点坐标为(0,﹣2),
    又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c),
    ∴c≥﹣2,(顶点在y轴上时取“=”),故①正确;
    ∵抛物线的顶点在线段AB上运动,开口向上,
    ∴当x>1时,一定有y随x的增大而增大,故②错误;
    若点D的横坐标最小值为﹣5,则此时对称轴为直线x=﹣3,C点的横坐标为﹣1,则CD=4,
    ∵抛物线形状不变,当对称轴为直线x=1时,C点的横坐标为3,
    ∴点C的横坐标最大值为3,故③正确;
    令y=0,则ax2+bx+c=0,
    CD2=(﹣)2﹣4×=,
    根据顶点坐标公式,=﹣2,
    ∴=﹣8,即=8,
    ∴CD2=×8=,
    ∵四边形ACDB为平行四边形,
    ∴CD=AB=1﹣(﹣3)=4,
    ∴=42=16,
    解得a=,故④正确;
    综上所述,正确的结论有①③④.
    故选:D.


    相关试卷

    第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北):

    这是一份第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共26页。

    第22章+二次函数选择题-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北):

    这是一份第22章+二次函数选择题-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共27页。试卷主要包含了,其对称轴为直线x=1等内容,欢迎下载使用。

    第1章二次函数(选择题)-【浙教版-中考真题】九年级数学上学期期末复习培优练习(浙江):

    这是一份第1章二次函数(选择题)-【浙教版-中考真题】九年级数学上学期期末复习培优练习(浙江),共17页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map