搜索
    上传资料 赚现金
    英语朗读宝

    第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川)

    第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川)第1页
    第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川)第2页
    第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川)第3页
    还剩46页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川)

    展开

    这是一份第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川),共49页。
    第24章 圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川)
    一.圆的认识(共1小题)
    1.(2021•攀枝花)如图,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与B,C重合),连接AP,作点B关于直线AP的对称点M,则线段MC的最小值为(  )

    A.2 B. C.3 D.
    二.垂径定理(共2小题)
    2.(2022•泸州)如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4,DE=4,则BC的长是(  )

    A.1 B. C.2 D.4
    3.(2021•凉山州)点P是⊙O内一点,过点P的最长弦的长为10cm,最短弦的长为6cm,则OP的长为(  )
    A.3cm B.4cm C.5cm D.6cm
    三.圆心角、弧、弦的关系(共1小题)
    4.(2020•内江)如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是的中点,则∠D的度数是(  )

    A.30° B.40° C.50° D.60°
    四.圆周角定理(共10小题)
    5.(2022•广元)如图,AB是⊙O的直径,C、D是⊙O上的两点,若∠CAB=65°,则∠ADC的度数为(  )

    A.25° B.35° C.45° D.65°
    6.(2022•南充)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点F,∠BOF=65°,则∠AOD为(  )

    A.70° B.65° C.50° D.45°
    7.(2021•巴中)如图,AB是⊙O的弦,且AB=6,点C是弧AB中点,点D是优弧AB上的一点,∠ADC=30°,则圆心O到弦AB的距离等于(  )

    A. B. C. D.
    8.(2021•南充)如图,AB是⊙O的直径,弦CD⊥AB于点E,CD=2OE,则∠BCD的度数为(  )

    A.15° B.22.5° C.30° D.45°
    9.(2021•眉山)如图,在以AB为直径的⊙O中,点C为圆上的一点,=3,弦CD⊥AB于点E,弦AF交CE于点H,交BC于点G.若点H是AG的中点,则∠CBF的度数为(  )

    A.18° B.21° C.22.5° D.30°
    10.(2020•巴中)如图,在⊙O中,点A、B、C在圆上,∠ACB=45°,AB=,则⊙O的半径OA的长是(  )

    A. B.2 C. D.3
    11.(2020•广安)如图,点A,B,C,D四点均在⊙O上,∠AOD=68°,AO∥DC,则∠B的度数为(  )

    A.40° B.60° C.56° D.68°
    12.(2020•眉山)如图,四边形ABCD的外接圆为⊙O,BC=CD,∠DAC=35°,∠ACD=45°,则∠ADB的度数为(  )

    A.55° B.60° C.65° D.70°
    13.(2020•宜宾)如图,AB是⊙O的直径,点C是圆上一点,连接AC和BC,过点C作CD⊥AB于点D,且CD=4,BD=3,则⊙O的周长是(  )

    A.π B.π C.π D.π
    14.(2020•泸州)如图,⊙O中,=,∠ABC=70°.则∠BOC的度数为(  )

    A.100° B.90° C.80° D.70°
    五.圆内接四边形的性质(共2小题)
    15.(2022•自贡)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,∠ABD=20°,则∠BCD的度数是(  )

    A.90° B.100° C.110° D.120°
    16.(2021•雅安)如图,四边形ABCD为⊙O的内接四边形,若四边形OBCD为菱形,则∠BAD的度数为(  )

    A.45° B.60° C.72° D.36°
    六.三角形的外接圆与外心(共1小题)
    17.(2021•内江)如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为(  )

    A.4 B.2 C.3 D.
    七.切线的性质(共6小题)
    18.(2022•眉山)如图是不倒翁的主视图,不倒翁的圆形脸恰好与帽子边沿PA,PB分别相切于点A,B,不倒翁的鼻尖正好是圆心O,若∠OAB=28°,则∠APB的度数为(  )

    A.28° B.50° C.56° D.62°
    19.(2022•自贡)P为⊙O外一点,PT与⊙O相切于点T,OP=10,∠OPT=30°,则PT长为(  )
    A.5 B.5 C.8 D.9
    20.(2021•广元)如图,在边长为2的正方形ABCD中,AE是以BC为直径的半圆的切线,则图中阴影部分的面积为(  )

    A. B.π﹣2 C.1 D.
    21.(2021•乐山)如图,已知OA=6,OB=8,BC=2,⊙P与OB、AB均相切,点P是线段AC与抛物线y=ax2的交点,则a的值为(  )

    A.4 B. C. D.5
    22.(2021•泸州)如图,⊙O的直径AB=8,AM,BN是它的两条切线,DE与⊙O相切于点E,并与AM,BN分别相交于D,C两点,BD,OC相交于点F,若CD=10,则BF的长是(  )

    A. B. C. D.
    23.(2020•雅安)如图,△ABC内接于圆,∠ACB=90°,过点C的切线交AB的延长线于点P,∠P=28°.则∠CAB=(  )

    A.62° B.31° C.28° D.56°
    八.三角形的内切圆与内心(共1小题)
    24.(2022•德阳)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,与BC相交于点G,则下列结论:①∠BAD=∠CAD;②若∠BAC=60°,则∠BEC=120°;③若点G为BC的中点,则∠BGD=90°;④BD=DE.其中一定正确的个数是(  )

    A.1 B.2 C.3 D.4
    九.正多边形和圆(共7小题)
    25.(2022•绵阳)在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受了中国人的浪漫.如图,将“雪花”图案(边长为4的正六边形ABCDEF)放在平面直角坐标系中,若AB与x轴垂直,顶点A的坐标为(2,﹣3),则顶点C的坐标为(  )

    A.(2﹣2,3) B.(0,1+2) C.(2﹣,3) D.(2﹣2,2+)
    26.(2022•内江)如图,正六边形ABCDEF内接于⊙O,半径为6,则这个正六边形的边心距OM和的长分别为(  )

    A.4, B.3,π C.2, D.3,2π
    27.(2022•雅安)如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG为(  )

    A.3 B. C. D.3
    28.(2022•成都)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为(  )

    A. B. C.3 D.2
    29.(2021•成都)如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为(  )

    A.4π B.6π C.8π D.12π
    30.(2020•德阳)半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是(  )
    A.a<b<c B.b<a<c C.a<c<b D.c<b<a
    31.(2020•凉山州)如图,等边三角形ABC和正方形ADEF都内接于⊙O,则AD:AB=(  )

    A.2: B.: C.: D.:2
    一十.弧长的计算(共1小题)
    32.(2021•广安)如图,公园内有一个半径为18米的圆形草坪,从A地走到B地有观赏路(劣弧AB)和便民路(线段AB).已知A、B是圆上的点,O为圆心,∠AOB=120°,小强从A走到B,走便民路比走观赏路少走(  )米.

    A.6π﹣6 B.6π﹣9 C.12π﹣9 D.12π﹣18
    一十一.扇形面积的计算(共7小题)
    33.(2022•达州)如图所示的曲边三角形可按下述方法作出:作等边△ABC,分别以点A,B,C为圆心,以AB长为半径作,,,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为(  )

    A.2π﹣2 B.2π﹣ C.2π D.π﹣
    34.(2022•凉山州)家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角∠BAC=90°,则扇形部件的面积为(  )

    A.米2 B.米2 C.米2 D.米2
    35.(2021•遂宁)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为点F,若⊙O的半径为4,∠CDF=15°,则阴影部分的面积为(  )

    A.16π﹣12 B.16π﹣24 C.20π﹣12 D.20π﹣24
    36.(2021•自贡)如图,直线y=﹣2x+2与坐标轴交于A、B两点,点P是线段AB上的一个动点,过点P作y轴的平行线交直线y=﹣x+3于点Q,△OPQ绕点O顺时针旋转45°,边PQ扫过区域(阴影部分)面积的最大值是(  )

    A.π B.π C.π D.π
    37.(2020•资阳)如图,△ABC中,∠C=90o,AC=BC=2.将△ABC绕着点A顺时针旋转90度到△AB1C1的位置,则边BC扫过区域的面积为(  )

    A. B.π C. D.2π
    38.(2020•攀枝花)如图,直径AB=6的半圆,绕B点顺时针旋转30°,此时点A到了点A',则图中阴影部分的面积是(  )

    A. B. C.π D.3π
    39.(2020•乐山)在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分面积为(  )

    A. B. C. D.π
    一十二.圆锥的计算(共5小题)
    40.(2022•广安)蒙古包可以近似地看作由圆锥和圆柱组成.下图是一个蒙古包的示意图,底面圆半径DE=2m,圆锥的高AC=1.5m,圆柱的高CD=2.5m,则下列说法错误的是(  )

    A.圆柱的底面积为4πm2
    B.圆柱的侧面积为10πm2
    C.圆锥的母线AB长为2.25m
    D.圆锥的侧面积为5πm2
    41.(2022•德阳)一个圆锥的底面直径是8,母线长是9,则圆锥侧面展开图的面积是(  )
    A.16π B.52π C.36π D.72π
    42.(2022•遂宁)如图,圆锥底面圆半径为7cm,高为24cm,则它侧面展开图的面积是(  )

    A.cm2 B.cm2 C.175πcm2 D.350πcm2
    43.(2021•德阳)已知圆锥的母线长为3,底面圆半径为1,则圆锥侧面展开图的圆心角为(  )
    A.30° B.60° C.120° D.150°
    44.(2021•广元)如图,从一块直径是2的圆形铁片上剪出一个圆心角为90°的扇形,将剪下来的扇形围成一个圆锥.那么这个圆锥的底面圆的半径是(  )

    A. B. C. D.1
    一十三.圆柱的计算(共1小题)
    45.(2022•绵阳)如图,锚标浮筒是打捞作业中用来标记锚或沉船位置的,它的上下两部分是圆锥,中间是圆柱(单位:mm).电镀时,如果每平方米用锌0.1千克,电镀1000个这样的锚标浮筒,需要多少千克锌?(π的值取3.14)(  )

    A.282.6 B.282600000 C.357.96 D.357960000

    第24章 圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川)
    参考答案与试题解析
    一.圆的认识(共1小题)
    1.(2021•攀枝花)如图,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与B,C重合),连接AP,作点B关于直线AP的对称点M,则线段MC的最小值为(  )

    A.2 B. C.3 D.
    【解答】解:连接AM,

    ∵点B和M关于AP对称,
    ∴AB=AM=3,
    ∴M在以A圆心,3为半径的圆上,
    ∴当A,M,C三点共线时,CM最短,
    ∵AC=,AM=AB=3,
    ∴CM=5﹣3=2,
    故选:A.
    二.垂径定理(共2小题)
    2.(2022•泸州)如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4,DE=4,则BC的长是(  )

    A.1 B. C.2 D.4
    【解答】解:∵AB是⊙O的直径,
    ∴∠C=90°,
    ∵OD⊥AC,
    ∴点D是AC的中点,
    ∴OD是△ABC的中位线,
    ∴OD∥BC,且OD=BC,
    设OD=x,则BC=2x,
    ∵DE=4,
    ∴OE=4﹣x,
    ∴AB=2OE=8﹣2x,
    在Rt△ABC中,由勾股定理可得,AB2=AC2+BC2,
    ∴(8﹣2x)2=(4)2+(2x)2,
    解得x=1.
    ∴BC=2x=2.
    故选:C.
    3.(2021•凉山州)点P是⊙O内一点,过点P的最长弦的长为10cm,最短弦的长为6cm,则OP的长为(  )
    A.3cm B.4cm C.5cm D.6cm
    【解答】解:如图所示,CD⊥AB于点P.

    根据题意,得:AB=10cm,CD=6cm.
    ∵AB是直径,且CD⊥AB,
    ∴CP=CD=3cm.
    根据勾股定理,得OP===4(cm).
    故选:B.
    三.圆心角、弧、弦的关系(共1小题)
    4.(2020•内江)如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是的中点,则∠D的度数是(  )

    A.30° B.40° C.50° D.60°
    【解答】解:连接OB,如图,
    ∵点B是的中点,
    ∴∠AOB=∠AOC=×120°=60°,
    ∴∠D=∠AOB=30°.
    故选:A.

    四.圆周角定理(共10小题)
    5.(2022•广元)如图,AB是⊙O的直径,C、D是⊙O上的两点,若∠CAB=65°,则∠ADC的度数为(  )

    A.25° B.35° C.45° D.65°
    【解答】解:∵AB是直径,
    ∴∠ACB=90°,
    ∵∠CAB=65°,
    ∴∠ABC=90°﹣∠CAB=25°,
    ∴∠ADC=∠ABC=25°,
    故选:A.
    6.(2022•南充)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点F,∠BOF=65°,则∠AOD为(  )

    A.70° B.65° C.50° D.45°
    【解答】解:∵OF⊥BC,
    ∴∠BFO=90°,
    ∵∠BOF=65°,
    ∴∠B=90°﹣65°=25°,
    ∵弦CD⊥AB,AB为⊙O的直径,
    ∴=,
    ∴∠AOD=2∠B=50°.
    故选:C.
    7.(2021•巴中)如图,AB是⊙O的弦,且AB=6,点C是弧AB中点,点D是优弧AB上的一点,∠ADC=30°,则圆心O到弦AB的距离等于(  )

    A. B. C. D.
    【解答】解:如图,

    连接OA、OC,OC交AB于点E,
    ∵点C是弧AB中点,AB=6,
    ∴OC⊥AB,且AE=BE=3,
    ∵∠ADC=30°,
    ∴∠AOC=2∠ADC=60°,
    ∴OE=AE=,
    故圆心O到弦AB的距离为.
    故选:C.
    8.(2021•南充)如图,AB是⊙O的直径,弦CD⊥AB于点E,CD=2OE,则∠BCD的度数为(  )

    A.15° B.22.5° C.30° D.45°
    【解答】解:连接OD,

    ∵AB是⊙O的直径,弦CD⊥AB于点E,
    ∴CD=2ED=2CE,
    ∵CD=2OE,
    ∴DE=OE,
    ∵CD⊥AB,
    ∴∠DOE=∠ODE=45°,
    ∴∠BCD=∠DOE=22.5°.
    故选:B.
    9.(2021•眉山)如图,在以AB为直径的⊙O中,点C为圆上的一点,=3,弦CD⊥AB于点E,弦AF交CE于点H,交BC于点G.若点H是AG的中点,则∠CBF的度数为(  )

    A.18° B.21° C.22.5° D.30°
    【解答】解:∵AB是直径,
    ∴∠ACB=90°,
    ∴∠ABC+∠CAB=90°,
    ∵=3,
    ∴∠CAB=3∠ABC,
    ∴∠ABC=22.5°,∠CAB=67.5°,
    ∵CD⊥AB,
    ∴∠ACE=22.5°,
    ∵点H是AG的中点,∠ACB=90°,
    ∴AH=CH=HG,
    ∴∠CAH=∠ACE=22.5°,
    ∵∠CAF=∠CBF,
    ∴∠CBF=22.5°,
    故选:C.
    10.(2020•巴中)如图,在⊙O中,点A、B、C在圆上,∠ACB=45°,AB=,则⊙O的半径OA的长是(  )

    A. B.2 C. D.3
    【解答】解:根据圆周角定理得:∠AOB=2∠ACB,
    ∵∠ACB=45°,
    ∴∠AOB=90°,
    ∵AB=2,OA=OB,
    ∴2OA2=AB2,
    ∴OA=OB=2,
    故选:B.
    11.(2020•广安)如图,点A,B,C,D四点均在⊙O上,∠AOD=68°,AO∥DC,则∠B的度数为(  )

    A.40° B.60° C.56° D.68°
    【解答】解:如图,

    连接OC,
    ∵AO∥DC,
    ∴∠ODC=∠AOD=68°,
    ∵OD=OC,
    ∴∠ODC=∠OCD=68°,
    ∴∠COD=44°,
    ∴∠AOC=112°,
    ∴∠B=∠AOC=56°.
    故选:C.
    12.(2020•眉山)如图,四边形ABCD的外接圆为⊙O,BC=CD,∠DAC=35°,∠ACD=45°,则∠ADB的度数为(  )

    A.55° B.60° C.65° D.70°
    【解答】解:∵BC=CD,
    ∴=,
    ∵∠ABD和∠ACD所对的弧都是,
    ∴∠BAC=∠DAC=35°,
    ∵∠ABD=∠ACD=45°,
    ∴∠ADB=180°﹣∠BAD﹣∠ABD=180°﹣70°﹣45°=65°.
    故选:C.
    13.(2020•宜宾)如图,AB是⊙O的直径,点C是圆上一点,连接AC和BC,过点C作CD⊥AB于点D,且CD=4,BD=3,则⊙O的周长是(  )

    A.π B.π C.π D.π
    【解答】解:∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∵CD⊥AB,
    ∴Rt△ABC∽Rt△CBD,
    ∴,
    ∵CD=4,BD=3,
    ∴BC===5
    ∴,
    ∴AB=,
    ∴⊙O的周长是π,
    故选:A.
    14.(2020•泸州)如图,⊙O中,=,∠ABC=70°.则∠BOC的度数为(  )

    A.100° B.90° C.80° D.70°
    【解答】解:∵=,
    ∴∠ABC=∠ACB=70°,
    ∴∠A=180°﹣70°﹣70°=40°,
    ∴∠BOC=2∠A=80°.
    故选:C.
    五.圆内接四边形的性质(共2小题)
    15.(2022•自贡)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,∠ABD=20°,则∠BCD的度数是(  )

    A.90° B.100° C.110° D.120°
    【解答】解:方法一:连接OD,如图所示,
    ∵∠ABD=20°,
    ∴∠AOD=40°,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∵∠OAD+∠ODA+∠AOD=180°,
    ∴∠OAD=∠ODA=70°,
    ∵四边形ABCD是圆内接四边形,
    ∴∠OAD+∠BCD=180°,
    ∴∠BCD=110°,
    故选:C.
    方法二:∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∵∠ABD=20°,
    ∴∠A=70°,
    ∵四边形ABCD是圆内接四边形,
    ∴∠A+∠BCD=180°,
    ∴∠BCD=110°,
    故选:C.

    16.(2021•雅安)如图,四边形ABCD为⊙O的内接四边形,若四边形OBCD为菱形,则∠BAD的度数为(  )

    A.45° B.60° C.72° D.36°
    【解答】解:∵四边形ABCD为⊙O的内接四边形,
    ∴∠BAD+∠BCD=180°,
    由圆周角定理得:∠BOD=2∠BAD,
    ∵四边形OBCD为菱形,
    ∴∠BOD=∠BCD,
    ∴∠BAD+2∠BAD=180°,
    解得:∠BAD=60°,
    故选:B.
    六.三角形的外接圆与外心(共1小题)
    17.(2021•内江)如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为(  )

    A.4 B.2 C.3 D.
    【解答】解:过点O作OM⊥BC,交BC于点M,

    ∵⊙O是△ABC的外接圆,∠BAC=60°,
    ∴∠BOC=2∠BAC=120°,
    又∵OB=OC,OM⊥BC,
    ∴∠COM=∠BOC=60°,MB=MC,
    ∴在Rt△COM中,∠OCM=30°,
    ∴OM=OC=1,CM=OM=,
    ∴BC=2CM=2,
    故选:B.
    七.切线的性质(共6小题)
    18.(2022•眉山)如图是不倒翁的主视图,不倒翁的圆形脸恰好与帽子边沿PA,PB分别相切于点A,B,不倒翁的鼻尖正好是圆心O,若∠OAB=28°,则∠APB的度数为(  )

    A.28° B.50° C.56° D.62°
    【解答】解:连接OB,
    ∵OA=OB,
    ∴∠OAB=∠OBA=28°,
    ∴∠AOB=124°,
    ∵PA、PB分别切⊙O于点A、B,
    ∴OA⊥PA,OP⊥AB,
    ∴∠OAP+∠OBP=180°,
    ∴∠APB+∠AOB=180°;
    ∴∠APB=56°.
    故选:C.

    19.(2022•自贡)P为⊙O外一点,PT与⊙O相切于点T,OP=10,∠OPT=30°,则PT长为(  )
    A.5 B.5 C.8 D.9
    【解答】解:方法一:如图,∵PT与⊙O相切于点T,
    ∴∠OTP=90°,
    又∵OP=10,∠OPT=30°,
    ∴OT=OP=×10=5,
    ∴PT===5.
    故选:A.
    方法二:在Rt△OPT中,∵cosP=,
    ∴PT=OP•cos30°=10×=5.
    故选:A.

    20.(2021•广元)如图,在边长为2的正方形ABCD中,AE是以BC为直径的半圆的切线,则图中阴影部分的面积为(  )

    A. B.π﹣2 C.1 D.
    【解答】解:假设AE与BC为直径的半圆切于点F,则AB=AF,
    ∵四边形ABCD为正方形,
    ∴∠BCD=90°,
    ∴EC与BC为直径的半圆相切,
    ∴EC=EF,
    ∴DE=2﹣CE,AE=2+CE,
    在Rt△ADE中,AE2=AD2+DE2,即(2+CE)2=22+(2﹣CE)2,
    解得:CE=,
    ∴DE=2﹣=,
    ∴阴影部分的面积=22﹣×π×12﹣×2×=,
    故选:D.

    21.(2021•乐山)如图,已知OA=6,OB=8,BC=2,⊙P与OB、AB均相切,点P是线段AC与抛物线y=ax2的交点,则a的值为(  )

    A.4 B. C. D.5
    【解答】解:设⊙P与OB、AB分别相切于点M、N,连接PM、PN,

    设圆的半径为x,则PN=PM=x,
    由题意知,OC=AO=6,则直线AC与y轴的夹角为45°,则CM=MP=x,
    由点A、C的坐标得,直线AC的表达式为y=﹣x+6,
    则点P的坐标为(x,﹣x+6),
    由点P、A的坐标得,PA=(6﹣x),
    则AN==,
    ∵⊙P与OB、AB分别相切于点M、N,
    ∴BN=BM=BC+CM=2+x,
    在Rt△ABO中,OA=6,OB=8,则AB=10=BN+AN,
    即10=+2+x,解得x=1,
    故点P的坐标为(1,5),
    将点P的坐标代入y=ax2得a=5.
    解法二:如图,连接BP并延长BP交x轴于点M,过点M作MN⊥AB于N.

    ∵⊙P与OB,AB相切,
    ∴BP平分∠OBA,
    ∵MO⊥OB,MN⊥AB,
    ∴MO=MN,
    设M(m,0),则MO=MN=m,AM=OA﹣MO=6﹣m,
    ∴sin∠MAN==,
    ∵OA=6,OB=8,
    ∴AB==10,
    ∴sin∠MAN==,
    ∴=,
    ∴m=,即M(,0),
    ∵B(0,8),
    ∴直线BM的解析式为y=﹣3x+8,
    ∵BC=2,
    ∴OC=OB﹣BC=6,即C(0,6),
    ∵A(6,0),
    ∴直线AC的解析式为y=﹣x+6,
    由,解得,
    ∴P(1,5),
    将点P的坐标代入y=ax2得a=5.
    解法三:如图,

    ∵BC=2,
    ∴OC=OB﹣BC=6,
    ∴C(0,6),
    ∵A(6,0),
    ∴直线AC的解析式为y=﹣x+6,
    ∵点P在直线AC上,
    ∴可以假设P(m,﹣m+6),
    ∵⊙P与OB,AB相切,
    ∴PN=PQ=m,PM=﹣m+6,
    ∵OA=6,OB=8,
    ∴AB==10,
    ∴S△AOB=•OA•OB=24,
    ∵S△AOB=S△AOP+S△BOP+SABP
    =•OA•PM+•OB•PN+•AB•PQ
    =3(﹣m+6)+4m+5m
    =6m+18,
    ∴6m+18=24,
    ∴m=1,
    ∴P(1,5),
    将点P的坐标代入y=ax2得a=5.
    故选:D.
    22.(2021•泸州)如图,⊙O的直径AB=8,AM,BN是它的两条切线,DE与⊙O相切于点E,并与AM,BN分别相交于D,C两点,BD,OC相交于点F,若CD=10,则BF的长是(  )

    A. B. C. D.
    【解答】解:如图,构建如图平面直角坐标系,过点D作DH⊥BC于H.

    ∵AB是直径,AB=8,
    ∴OA=OB=4,
    ∵AD,BC,CD是⊙O的切线,
    ∴∠DAB=∠ABH=∠DHB=90°,DA=DE,CE=CB,
    ∴四边形ABHD是矩形,
    ∴AD=BH,AB=DH=8,
    ∴CH===6,
    设AD=DE=BH=x,则EC=CB=x+6,
    ∴x+x+6=10,
    ∴x=2,
    ∴D(2,4),C(8,﹣4),B(0,﹣4),
    ∴直线OC的解析式为y=﹣x,直线BD的解析式为y=4x﹣4,
    由,解得,
    ∴F(,﹣),
    ∴BF==,
    解法二:设DH交OC于G,利用△OBF∽△GDF求解即可.

    故选:A.
    23.(2020•雅安)如图,△ABC内接于圆,∠ACB=90°,过点C的切线交AB的延长线于点P,∠P=28°.则∠CAB=(  )

    A.62° B.31° C.28° D.56°
    【解答】解:连接OC,如图,
    ∵PC为切线,
    ∴OC⊥PC,
    ∴∠PCO=90°,
    ∴∠POC=90°﹣∠P=90°﹣28°=62°,
    ∵OA=OC,
    ∴∠A=∠OCA,
    而∠POC=∠A+∠OCA,
    ∴∠A=×62°=31°.
    故选:B.

    八.三角形的内切圆与内心(共1小题)
    24.(2022•德阳)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,与BC相交于点G,则下列结论:①∠BAD=∠CAD;②若∠BAC=60°,则∠BEC=120°;③若点G为BC的中点,则∠BGD=90°;④BD=DE.其中一定正确的个数是(  )

    A.1 B.2 C.3 D.4
    【解答】解:∵E是△ABC的内心,
    ∴AD平分∠BAC,
    ∴∠BAD=∠CAD,故①正确;
    如图,连接BE,CE,

    ∵E是△ABC的内心,
    ∴∠EBC=∠ABC,∠ECB=ACB,
    ∵∠BAC=60°,
    ∴∠ABC+∠ACB=120°,
    ∴∠BEC=180°﹣∠EBC﹣∠ECB=180°﹣(∠ABC+∠ACB)=120°,故②正确;

    ∵∠BAD=∠CAD,
    ∴=,
    ∴OD⊥BC,
    ∵点G为BC的中点,
    ∴G一定在OD上,
    ∴∠BGD=90°,故③正确;
    如图,连接BE,
    ∴BE平分∠ABC,
    ∴∠ABE=∠CBE,
    ∵∠DBC=∠DAC=∠BAD,
    ∴∠DBC+∠EBC=∠EBA+∠EAB,
    ∴∠DBE=∠DEB,
    ∴DB=DE,故④正确.
    ∴一定正确的①②③④,共4个.
    故选:D.
    九.正多边形和圆(共7小题)
    25.(2022•绵阳)在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受了中国人的浪漫.如图,将“雪花”图案(边长为4的正六边形ABCDEF)放在平面直角坐标系中,若AB与x轴垂直,顶点A的坐标为(2,﹣3),则顶点C的坐标为(  )

    A.(2﹣2,3) B.(0,1+2) C.(2﹣,3) D.(2﹣2,2+)
    【解答】解:如图,连接BD交CF于点M,则点B(2,1),
    在Rt△BCM中,BC=4,∠BCM=×120°=60°,
    ∴CM=BC=2,BM=BC=2,
    ∴点C的横坐标为﹣(2﹣2)=2﹣2,纵坐标为1+2=3,
    ∴点C的坐标为(2﹣2,3),
    故选:A.

    26.(2022•内江)如图,正六边形ABCDEF内接于⊙O,半径为6,则这个正六边形的边心距OM和的长分别为(  )

    A.4, B.3,π C.2, D.3,2π
    【解答】解:连接OB、OC,
    ∵六边形ABCDEF为正六边形,
    ∴∠BOC==60°,
    ∵OB=OC,
    ∴△BOC为等边三角形,
    ∴BC=OB=6,
    ∵OM⊥BC,
    ∴BM=BC=3,
    ∴OM===3,
    的长为:=2π,
    故选:D.

    27.(2022•雅安)如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG为(  )

    A.3 B. C. D.3
    【解答】解:连接OC,OD,
    ∵正六边形ABCDEF是圆的内接多边形,
    ∴∠COD=60°,
    ∵OC=OD,OG⊥CD,
    ∴∠COG=30°,
    ∵⊙O的周长等于6π,
    ∴OC=3,
    ∴OG=3cos30°=,
    故选:C.

    28.(2022•成都)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为(  )

    A. B. C.3 D.2
    【解答】解:连接OB、OC,如图:

    ∵⊙O的周长等于6π,
    ∴⊙O的半径OB=OC==3,
    ∵六边形ABCDEF是正六边形,
    ∴∠BOC==60°,
    ∴△BOC是等边三角形,
    ∴BC=OB=OC=3,
    即正六边形的边长为3,
    故选:C.
    29.(2021•成都)如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为(  )

    A.4π B.6π C.8π D.12π
    【解答】解:∵正六边形的外角和为360°,
    ∴每一个外角的度数为360°÷6=60°,
    ∴正六边形的每个内角为180°﹣60°=120°,
    ∵正六边形的边长为6,
    ∴S阴影==12π,
    故选:D.
    30.(2020•德阳)半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是(  )
    A.a<b<c B.b<a<c C.a<c<b D.c<b<a
    【解答】解:设圆的半径为R,
    则正三角形的边心距为a=R×cos60°=R.
    四边形的边心距为b=R×cos45°=R,
    正六边形的边心距为c=R×cos30°=R.
    ∵RRR,
    ∴a<b<c,
    故选:A.
    31.(2020•凉山州)如图,等边三角形ABC和正方形ADEF都内接于⊙O,则AD:AB=(  )

    A.2: B.: C.: D.:2
    【解答】解:连接OA、OB、OD,过O作OH⊥AB于H,如图所示:
    则AH=BH=AB,
    ∵等边三角形ABC和正方形ADEF,都内接于⊙O,
    ∴∠AOB=120°,∠AOD=90°,
    ∵OA=OD=OB,
    ∴△AOD是等腰直角三角形,∠AOH=∠BOH=×120°=60°,
    ∴AD=OA,AH=OA•sin60°=OA,
    ∴AB=2AH=2×OA=OA,
    ∴==,
    故选:B.

    一十.弧长的计算(共1小题)
    32.(2021•广安)如图,公园内有一个半径为18米的圆形草坪,从A地走到B地有观赏路(劣弧AB)和便民路(线段AB).已知A、B是圆上的点,O为圆心,∠AOB=120°,小强从A走到B,走便民路比走观赏路少走(  )米.

    A.6π﹣6 B.6π﹣9 C.12π﹣9 D.12π﹣18
    【解答】解:作OC⊥AB于C,如图,

    则AC=BC,
    ∵OA=OB,∠AOB=120°,
    ∴∠A=∠B=(180°﹣∠AOB)=30°,
    在Rt△AOC中,OC=OA=9米,
    AC==米,
    ∴AB=2AC=米,
    又∵的长=米,
    ∴走便民路比走观赏路少走()米,
    故选:D.
    一十一.扇形面积的计算(共7小题)
    33.(2022•达州)如图所示的曲边三角形可按下述方法作出:作等边△ABC,分别以点A,B,C为圆心,以AB长为半径作,,,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为(  )

    A.2π﹣2 B.2π﹣ C.2π D.π﹣
    【解答】解:设等边三角形ABC的边长为r,
    ∴=,解得r=2,即正三角形的边长为2,
    ∴这个曲边三角形的面积=2××+(﹣)×3=2π﹣2,
    故选:A.
    34.(2022•凉山州)家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角∠BAC=90°,则扇形部件的面积为(  )

    A.米2 B.米2 C.米2 D.米2
    【解答】解:连结BC,AO,如图所示,
    ∵∠BAC=90°,
    ∴BC是⊙O的直径,
    ∵⊙O的直径为1米,
    ∴AO=BO=(米),
    ∴AB==(米),
    ∴扇形部件的面积=π×()2=(米2),
    故选:C.

    35.(2021•遂宁)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为点F,若⊙O的半径为4,∠CDF=15°,则阴影部分的面积为(  )

    A.16π﹣12 B.16π﹣24 C.20π﹣12 D.20π﹣24
    【解答】解:连接AD,OE
    ∵AB为直径,
    ∴∠ADB=∠ADC=90°,
    ∴∠ADF+∠CDF=90°,
    ∵DF⊥AC,
    ∴∠AFD=90°,
    ∴∠ADF+∠DAF=90°,
    ∴∠CDF=∠DAC,
    ∵∠CDF=15°,
    ∴∠DAC=15°,
    ∵AB=AC,AD⊥BC,
    ∴∠BAC=2∠DAC=30°,
    ∵OA=OE,
    ∴∠OAE=∠OEA=30°,
    ∴∠AOE=120°,
    作OH⊥AE于H,
    在Rt△AOH中,OA=4,
    ∴OH=sin30°×OA=2,
    AH=cos30°×OA=6,
    ∴AE=2AH=12,
    ∴S阴影=S扇形OAE﹣S△AOE==16.

    故选:A.
    36.(2021•自贡)如图,直线y=﹣2x+2与坐标轴交于A、B两点,点P是线段AB上的一个动点,过点P作y轴的平行线交直线y=﹣x+3于点Q,△OPQ绕点O顺时针旋转45°,边PQ扫过区域(阴影部分)面积的最大值是(  )

    A.π B.π C.π D.π
    【解答】解:设P(m,﹣2m+2),则Q(m,﹣m+3).
    ∴OP2=m2+(﹣2m+2)2=5m2﹣8m+4,OQ2=m2+(﹣m+3)2=2m2﹣6m+9.

    ∵△OPQ绕点O顺时针旋转45°.
    ∴△OPQ≌△ODC,∠QOC=∠POD=45°.
    ∴PQ扫过区域(阴影部分)面积S=S扇OQC﹣S扇OPD===.
    当m=时,S的最大值为:.
    故选:A.
    37.(2020•资阳)如图,△ABC中,∠C=90o,AC=BC=2.将△ABC绕着点A顺时针旋转90度到△AB1C1的位置,则边BC扫过区域的面积为(  )

    A. B.π C. D.2π
    【解答】解:在Rt△ACB中,∠C=90o,AC=BC=2,由勾股定理得:AB==2,
    ∵将△ABC绕着点A顺时针旋转90度到△AB1C1的位置,
    ∴∠CAC1=90°,
    ∴阴影部分的面积S=S+S﹣S△ACB﹣S
    =+2×2﹣2×2﹣
    =π,
    故选:B.
    38.(2020•攀枝花)如图,直径AB=6的半圆,绕B点顺时针旋转30°,此时点A到了点A',则图中阴影部分的面积是(  )

    A. B. C.π D.3π
    【解答】解:∵半圆AB,绕B点顺时针旋转30°,
    ∴S阴影=S半圆A′B+S扇形ABA′﹣S半圆AB
    =S扇形ABA′

    =3π,
    故选:D.
    39.(2020•乐山)在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分面积为(  )

    A. B. C. D.π
    【解答】解:∵∠ABC=90°,∠BAC=30°,BC=1,
    ∴AB=BC=,AC=2BC=2,
    ∴图中阴影部分面积=S扇形ACC′﹣S扇形ADB′﹣S△AB′C′=﹣﹣×1×=﹣,
    故选:B.

    一十二.圆锥的计算(共5小题)
    40.(2022•广安)蒙古包可以近似地看作由圆锥和圆柱组成.下图是一个蒙古包的示意图,底面圆半径DE=2m,圆锥的高AC=1.5m,圆柱的高CD=2.5m,则下列说法错误的是(  )

    A.圆柱的底面积为4πm2
    B.圆柱的侧面积为10πm2
    C.圆锥的母线AB长为2.25m
    D.圆锥的侧面积为5πm2
    【解答】解:∵底面圆半径DE=2m,
    ∴圆柱的底面积为4πm2,所以A选项不符合题意;
    ∵圆柱的高CD=2.5m,
    ∴圆柱的侧面积=2π×2×2.5=10π(m2),所以B选项不符合题意;
    ∵底面圆半径DE=2m,即BC=2m,圆锥的高AC=1.5m,
    ∴圆锥的母线长AB==2.5(m),所以C选项符合题意;
    ∴圆锥的侧面积=×2π×2×2.5=5π(m2),所以D选项不符合题意.
    故选:C.
    41.(2022•德阳)一个圆锥的底面直径是8,母线长是9,则圆锥侧面展开图的面积是(  )
    A.16π B.52π C.36π D.72π
    【解答】解:如图,AB=8,SA=SB=9,
    所以侧面展开图扇形的弧BC的长为8π,
    由扇形面积的计算公式得,
    圆锥侧面展开图的面积为×8π×9=36π,
    故选:C.

    42.(2022•遂宁)如图,圆锥底面圆半径为7cm,高为24cm,则它侧面展开图的面积是(  )

    A.cm2 B.cm2 C.175πcm2 D.350πcm2
    【解答】解:在Rt△AOC中,AC==25(cm),
    所以圆锥的侧面展开图的面积=×2π×7×25=175π(cm2).
    故选:C.
    43.(2021•德阳)已知圆锥的母线长为3,底面圆半径为1,则圆锥侧面展开图的圆心角为(  )
    A.30° B.60° C.120° D.150°
    【解答】解:圆锥侧面展开图的弧长是:2π×1=2π,
    设圆心角的度数是n度,
    则=2π,
    解得:n=120.
    故选:C.
    44.(2021•广元)如图,从一块直径是2的圆形铁片上剪出一个圆心角为90°的扇形,将剪下来的扇形围成一个圆锥.那么这个圆锥的底面圆的半径是(  )

    A. B. C. D.1
    【解答】解:∵⊙O的直径为2,则半径是:1,
    ∴S⊙O=π×12=π,
    连接BC、AO,根据题意知BC⊥AO,AO=BO=1,
    在Rt△ABO中,AB==,
    即扇形的对应半径R=,
    弧长l==,
    设圆锥底面圆半径为r,则有
    2πr=,
    解得:r=.
    故选:B.

    一十三.圆柱的计算(共1小题)
    45.(2022•绵阳)如图,锚标浮筒是打捞作业中用来标记锚或沉船位置的,它的上下两部分是圆锥,中间是圆柱(单位:mm).电镀时,如果每平方米用锌0.1千克,电镀1000个这样的锚标浮筒,需要多少千克锌?(π的值取3.14)(  )

    A.282.6 B.282600000 C.357.96 D.357960000
    【解答】解:由图形可知圆锥的底面圆的半径为0.3m,
    圆锥的高为0.4m,
    则圆锥的母线长为:=0.5m.
    ∴圆锥的侧面积S1=π×0.3×0.5=0.15π(m2),
    ∵圆柱的高为1m.
    圆柱的侧面积S2=2π×0.3×1=0.6π(m2),
    ∴浮筒的表面积=2S1+S2=0.9π(m2),
    ∵每平方米用锌0.1kg,
    ∴一个浮筒需用锌:0.9π×0.1kg,
    ∴1000个这样的锚标浮筒需用锌:1000×0.9π×0.1=90π≈282.6(kg).
    故选:A.

    相关试卷

    第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西):

    这是一份第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西),共49页。

    第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北):

    这是一份第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共26页。

    第24章+圆(填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川):

    这是一份第24章+圆(填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川),共21页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map