第1章二次函数(解答题提升题)-【浙教版-中考真题】九年级数学上学期期末复习培优练习(浙江)
展开第1章二次函数(解答题提升题)-【浙教版-中考真题】九年级数学上学期期末复习培优练习(浙江)
一.二次函数的应用(共2小题)
1.(2022•台州)如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).
(1)若h=1.5,EF=0.5m.
①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;
②求下边缘抛物线与x轴的正半轴交点B的坐标;
③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围.
(2)若EF=1m.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值.
2.(2021•湖州)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.
(1)求四月和五月这两个月中该景区游客人数平均每月增长百分之几;
(2)若该景区仅有A,B两个景点,售票处出示的三种购票方式如下表所示:
购票方式
甲
乙
丙
可游玩景点
A
B
A和B
门票价格
100元/人
80元/人
160元/人
据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万,并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.
①若丙种门票价格下降10元,求景区六月份的门票总收入;
②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?
二.二次函数综合题(共9小题)
3.(2022•嘉兴)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).
(1)求抛物线L1的函数表达式.
(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.
(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.
4.(2022•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上.抛物线y=﹣x2+bx+c经过A,C两点,与x轴交于另一个点D.
(1)①求点A,B,C的坐标;
②求b,c的值.
(2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.
5.(2022•舟山)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).
(1)求抛物线L1的函数表达式.
(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.
(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3.已知点P(8﹣t,s),Q(t﹣4,r)都在抛物线L3上,若当t>6时,都有s>r,求n的取值范围.
6.(2022•丽水)如图,已知点M(x1,y1),N(x2,y2)在二次函数y=a(x﹣2)2﹣1(a>0)的图象上,且x2﹣x1=3.
(1)若二次函数的图象经过点(3,1).
①求这个二次函数的表达式;
②若y1=y2,求顶点到MN的距离;
(2)当x1≤x≤x2时,二次函数的最大值与最小值的差为1,点M,N在对称轴的异侧,求a的取值范围.
7.(2021•丽水)如图,已知抛物线L:y=x2+bx+c经过点A(0,﹣5),B(5,0).
(1)求b,c的值;
(2)连结AB,交抛物线L的对称轴于点M.
①求点M的坐标;
②将抛物线L向左平移m(m>0)个单位得到抛物线L1.过点M作MN∥y轴,交抛物线L1于点N.P是抛物线L1上一点,横坐标为﹣1,过点P作PE∥x轴,交抛物线L于点E,点E在抛物线L对称轴的右侧.若PE+MN=10,求m的值.
8.(2020•浙江)如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.
(1)当m=5时,求n的值.
(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.
(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.
9.(2020•衢州)如图1,在平面直角坐标系中,△ABC的顶点A,C分别是直线y=﹣x+4与坐标轴的交点,点B的坐标为(﹣2,0),点D是边AC上的一点,DE⊥BC于点E,点F在边AB上,且D,F两点关于y轴上的某点成中心对称,连接DF,EF.设点D的横坐标为m,EF2为l,请探究:
①线段EF长度是否有最小值.
②△BEF能否成为直角三角形.
小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题.
(1)小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别.
(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.
(3)小明通过观察,推理,发现△BEF能成为直角三角形,请你求出当△BEF为直角三角形时m的值.
10.(2020•湖州)如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连接OA,OB,DA和DB.
(1)如图1,当AC∥x轴时,
①已知点A的坐标是(﹣2,1),求抛物线的解析式;
②若四边形AOBD是平行四边形,求证:b2=4c.
(2)如图2,若b=﹣2,=,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.
11.(2020•浙江)在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B.
(1)求该抛物线的函数表达式.
(2)当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m.
①求OD的长.
②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3).东东起跳后所持球离地面高度h1(m)(传球前)与东东起跳后时间t(s)满足函数关系式h1=﹣2(t﹣0.5)2+2.7(0≤t≤1);小戴在点F(1.5,0)处拦截,他比东东晚0.3s垂直起跳,其拦截高度h2(m)与东东起跳后时间t(s)的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).
第1章二次函数(解答题提升题)-【浙教版-中考真题】九年级数学上学期期末复习培优练习(浙江)
参考答案与试题解析
一.二次函数的应用(共2小题)
1.(2022•台州)如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).
(1)若h=1.5,EF=0.5m.
①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;
②求下边缘抛物线与x轴的正半轴交点B的坐标;
③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围.
(2)若EF=1m.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值.
【解答】解:(1)①如图1,由题意得A(2,2)是上边缘抛物线的顶点,
设y=a(x﹣2)2+2,
又∵抛物线过点(0,1.5),
∴1.5=4a+2,
∴a=﹣,
∴上边缘抛物线的函数解析式为y=﹣(x﹣2)2+2,
当y=0时,0=﹣(x﹣2)2+2,
解得x1=6,x2=﹣2(舍去),
∴喷出水的最大射程OC为6m;
②∵对称轴为直线x=2,
∴点(0,1.5)的对称点为(4,1.5),
∴下边缘抛物线是由上边缘抛物线向左平移4m得到的,
∴点B的坐标为(2,0);
③∵EF=0.5,
∴点F的纵坐标为0.5,
∴0.5=﹣(x﹣2)2+2,
解得x=2±2,
∵x>0,
∴x=2+2,
当x>2时,y随x的增大而减小,
∴当2≤x≤6时,要使y≥0.5,
则x≤2+2,
∵当0≤x≤2时,y随x的增大而增大,且x=0时,y=1.5>0.5,
∴当0≤x≤6时,要使y≥0.5,则0≤x≤2+2,
∵DE=3,灌溉车行驶时喷出的水能浇灌到整个绿化带,
∴d的最大值为2+2﹣3=2﹣1,
再看下边缘抛物线,喷出的水能浇灌到绿化带底部的条件是OB≤d,
∴d的最小值为2,
综上所述,d的取值范围是2≤d≤2﹣1;
(2)当喷水口高度最低,且恰好能浇灌到整个绿化带时,点D、F恰好分别在两条抛物线上,
设点D(m,﹣(m+2)2+h+0.5),F(m+3,﹣(m+3﹣2)2+h+0.5),
则有﹣(m+3﹣2)2+h+0.5﹣[﹣(m+2)2+h+0.5]=1,
解得m=2.5,
∴点D的纵坐标为h﹣,
∴h﹣=0,
∴h的最小值为.
2.(2021•湖州)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.
(1)求四月和五月这两个月中该景区游客人数平均每月增长百分之几;
(2)若该景区仅有A,B两个景点,售票处出示的三种购票方式如下表所示:
购票方式
甲
乙
丙
可游玩景点
A
B
A和B
门票价格
100元/人
80元/人
160元/人
据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万,并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.
①若丙种门票价格下降10元,求景区六月份的门票总收入;
②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?
【解答】解:(1)设四月和五月这两个月中该景区游客人数平均每月增长率为x,
由题意,得4(1+x)2=5.76,
解这个方程,得x1=0.2,x2=﹣2.2(舍去),
答:四月和五月这两个月中该景区游客人数平均每月增长率为20%;
(2)①由题意,得
100×(2﹣10×0.06)+80×(3﹣10×0.04)+(160﹣10)×(2+10×0.06+10×0.04)=798(万元).
答:景区六月份的门票总收入为798万元.
②设丙种门票价格降低m元,景区六月份的门票总收入为W万元,
由题意,得
W=100(2﹣0.06m)+80(3﹣0.04m)+(160﹣m)(2+0.06m+0.04m),
化简,得W=﹣0.1(m﹣24)2+817.6,
∵﹣0.1<0,
∴当m=24时,W取最大值,为817.6万元.
答:当丙种门票价格下降24元时,景区六月份的门票总收入有最大值,最大值是817.6万元.
二.二次函数综合题(共9小题)
3.(2022•嘉兴)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).
(1)求抛物线L1的函数表达式.
(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.
(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.
【解答】解:(1)∵y=a(x+1)2﹣4(a≠0)经过点A(1,0),
∴4a﹣4=0,
∴a=1,
∴抛物线L1的函数表达式为y=x2+2x﹣3;
(2)∵y=(x+1)2﹣4,
∴抛物线的顶点(﹣1,﹣4),
将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点(﹣1,﹣4+m),
而(﹣1,﹣4+m)关于原点的对称点为(1,4﹣m),
把(1,4﹣m)代入y=x2+2x﹣3得到,1+2﹣3=4﹣m,
∴m=4;
(3)抛物线L1向右平移n(n>0)个单位得到抛物线L3,的解析式为y=(x﹣n+1)2﹣4,
∵点B(1,y1),C(3,y2)在抛物线L3上,
∴y1=(2﹣n)2﹣4,y2=(4﹣n)2﹣4,
∵y1>y2,
∴(2﹣n)2﹣4>(4﹣n)2﹣4,
解得n>3,
∴n的取值范围为n>3.
4.(2022•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上.抛物线y=﹣x2+bx+c经过A,C两点,与x轴交于另一个点D.
(1)①求点A,B,C的坐标;
②求b,c的值.
(2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.
【解答】解:(1)①四边形OABC是边长为3的正方形,
∴A(3,0),B(3,3),C(0,3);
②把A(3,0),C(0,3)代入抛物线y=﹣x2+bx+c中得:,
解得:;
(2)∵AP⊥PM,
∴∠APM=90°,
∴∠APB+∠CPM=90°,
∵∠B=∠APB+∠BAP=90°,
∴∠BAP=∠CPM,
∵∠B=∠PCM=90°,
∴△MCP∽△PBA,
∴=,即=,
∴3n=m(3﹣m),
∴n=﹣m2+m=﹣(m﹣)2+(0≤m≤3),
∵﹣<0,
∴当m=时,n的值最大,最大值是.
5.(2022•舟山)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).
(1)求抛物线L1的函数表达式.
(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.
(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3.已知点P(8﹣t,s),Q(t﹣4,r)都在抛物线L3上,若当t>6时,都有s>r,求n的取值范围.
【解答】解:(1)把A(1,0)代入y=a(x+1)2﹣4得:
a(1+1)2﹣4=0,
解得a=1,
∴y=(x+1)2﹣4=x2+2x﹣3;
答:抛物线L1的函数表达式为y=x2+2x﹣3;
(2)抛物线L1:y=(x+1)2﹣4的顶点为(﹣1,﹣4),
将抛物线L1向上平移m(m>0)个单位得到抛物线L2,则抛物线L2的顶点为(﹣1,﹣4+m),
而(﹣1,﹣4+m)关于原点的对称点为(1,4﹣m),
把(1,4﹣m)代入y=x2+2x﹣3得:
12+2×1﹣3=4﹣m,
解得m=4,
答:m的值为4;
(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,抛物线L3解析式为y=(x﹣n+1)2﹣4,
∵点P(8﹣t,s),Q(t﹣4,r)都在抛物线L3上,
∴s=(8﹣t﹣n+1)2﹣4=(9﹣t﹣n)2﹣4,
r=(t﹣4﹣n+1)2﹣4=(t﹣n﹣3)2﹣4,
∵当t>6时,s>r,
∴s﹣r>0,
∴[(9﹣t﹣n)2﹣4]﹣[(t﹣n﹣3)2﹣4]>0,
整理变形得:(9﹣t﹣n)2﹣(t﹣n﹣3)2>0,
(9﹣t﹣n+t﹣n﹣3)(9﹣t﹣n﹣t+n+3)>0,
(6﹣2n)(12﹣2t)>0,
∵t>6,
∴12﹣2t<0,
∴6﹣2n<0,
解得n>3,
∴n的取值范围是n>3.
6.(2022•丽水)如图,已知点M(x1,y1),N(x2,y2)在二次函数y=a(x﹣2)2﹣1(a>0)的图象上,且x2﹣x1=3.
(1)若二次函数的图象经过点(3,1).
①求这个二次函数的表达式;
②若y1=y2,求顶点到MN的距离;
(2)当x1≤x≤x2时,二次函数的最大值与最小值的差为1,点M,N在对称轴的异侧,求a的取值范围.
【解答】解:(1)①∵二次函数y=a(x﹣2)2﹣1(a>0)经过(3,1),
∴1=a﹣1,
∴a=2,
∴二次函数的解析式为y=2(x﹣2)2﹣1;
②∵y1=y2,
∴M,N关于抛物线的对称轴对称,
∵对称轴是直线x=2,且x2﹣x1=3,
∴x1=,x2=,
当x=时,y1=2×(﹣2)2﹣1=,
∴当y1=y2时,顶点到MN的距离=+1=;
(2)若M,N在对称轴的异侧,y1≥y2,
∴x1+3>2,
∴x1>﹣1,
∵x2﹣x1=3,
∴x1≤,
∴﹣1<x1≤,
∵函数的最大值为y1=a(x1﹣2)2﹣1,最小值为﹣1,
∴y﹣(﹣1)=1,
∴a=,
∴≤(x1﹣2)2<9,
∴<a≤.
若M,N在对称轴的异侧,y1≤y2,x1<2,
∵x1>,
∴<x1<2,
∵函数的最大值为y2=a(x2﹣2)2﹣1,最小值为﹣1,
∴y2﹣(﹣1)=1,
∴a=,
∴<(x1+1)2<9,
∴<a<.
综上所述,<a≤.
7.(2021•丽水)如图,已知抛物线L:y=x2+bx+c经过点A(0,﹣5),B(5,0).
(1)求b,c的值;
(2)连结AB,交抛物线L的对称轴于点M.
①求点M的坐标;
②将抛物线L向左平移m(m>0)个单位得到抛物线L1.过点M作MN∥y轴,交抛物线L1于点N.P是抛物线L1上一点,横坐标为﹣1,过点P作PE∥x轴,交抛物线L于点E,点E在抛物线L对称轴的右侧.若PE+MN=10,求m的值.
【解答】解:(1)∵抛物线y=x2+bx+c经过点A(0,﹣5)和点B(5,0),
∴,
解得:,
∴b,c的值分别为﹣4,﹣5.
(2)①设直线AB的解析式为y=kx+n(k≠0),
把A(0,﹣5),B(5,0)的坐标分别代入表达式,得,
解得,
∴直线AB的函数表达式为y=x﹣5.
由(1)得,抛物线L的对称轴是直线x=2,
当x=2时,y=x﹣5=﹣3,
∴点M的坐标是(2,﹣3);
②设抛物线L1的表达式为y=(x﹣2+m)2﹣9,
∵MN∥y轴,
∴点N的坐标是(2,m2﹣9),
∵点P的横坐标为﹣1,
∴P点的坐标是(﹣1,m2﹣6m),
设PE交抛物线L1于另一点Q,
∵抛物线L1的对称轴是直线x=2﹣m,PE∥x轴,
∴根据抛物线的对称性,点Q的坐标是(5﹣2m,m2﹣6m),
(Ⅰ)如图1,当点N在点M及下方,即0<m<时,
∴PQ=5﹣2m﹣(﹣1)=6﹣2m,MN=﹣3﹣(m2﹣9)=6﹣m2,
由平移的性质得,QE=m,
∴PE=6﹣2m+m=6﹣m,
∵PE+MN=10,
∴6﹣m+6﹣m2=10,
解得,m1=﹣2(舍去),m2=1,
(Ⅱ)如图2,当点N在点M及上方,点Q在点P及右侧,
即<m<3时,
PE=6﹣m,MN=m2﹣6,
∵PE+MN=10,
∴6﹣m+m2﹣6=10,
解得,m1=(舍去),m2=(舍去).
(Ⅲ)如图3,当点N在M上方,点Q在点P左侧,
即m>3时,PE=m,MN=m2﹣6,
∵PE+MN=10,
∴m+m2﹣6=10,
解得,m1=(舍去),m2=,
综合以上可得m的值是1或.
8.(2020•浙江)如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.
(1)当m=5时,求n的值.
(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.
(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.
【解答】解:(1)当m=5时,y=﹣(x﹣5)2+4,
当x=1时,n=﹣×42+4=﹣4.
(2)当n=2时,将C(1,2)代入函数表达式y=﹣(x﹣m)2+4,得2=﹣(1﹣m)2+4,
解得m=3或﹣1(舍去),
∴此时抛物线的对称轴x=3,
根据抛物线的对称性可知,当y=2时,x=1或5,
∴x的取值范围为1≤x≤5.
(3)∵点A与点C不重合,
∴m≠1,
∵抛物线的顶点A的坐标是(m,4),
∴抛物线的顶点在直线y=4上,
当x=0时,y=﹣m2+4,
∴点B的坐标为(0,﹣m2+4),
如图,抛物线从图1的位置向左平移到图2的位置前,m逐渐减小,点B沿y轴向上移动,
当点B与O重合时,﹣m2+4=0,
解得m=2或﹣2(不合题意舍去),
当点B与点D重合时,如图2,顶点A也与B,D重合,点B到达最高点,
∴点B(0,4),
∴﹣m2+4=4,解得m=0,
当抛物线从图2的位置继续向左平移时,如图3点B不在线段OD上,
∴B点在线段OD上时,m的取值范围是:0≤m<1或1<m<2.
9.(2020•衢州)如图1,在平面直角坐标系中,△ABC的顶点A,C分别是直线y=﹣x+4与坐标轴的交点,点B的坐标为(﹣2,0),点D是边AC上的一点,DE⊥BC于点E,点F在边AB上,且D,F两点关于y轴上的某点成中心对称,连接DF,EF.设点D的横坐标为m,EF2为l,请探究:
①线段EF长度是否有最小值.
②△BEF能否成为直角三角形.
小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题.
(1)小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别.
(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.
(3)小明通过观察,推理,发现△BEF能成为直角三角形,请你求出当△BEF为直角三角形时m的值.
【解答】解:(1)用描点法画出图形如图1,由图象可知函数类别为二次函数.
(2)如图2,过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,
则∠FGK=∠DHK=90°,
记FD交y轴于点K,
∵D点与F点关于y轴上的K点成中心对称,
∴KF=KD,
∵∠FKG=∠DKH,
∴Rt△FGK≌Rt△DHK(AAS),
∴FG=DH,
∵直线AC的解析式为y=﹣x+4,
∴x=0时,y=4,
∴A(0,4),
又∵B(﹣2,0),
设直线AB的解析式为y=kx+b,
∴,
解得,
∴直线AB的解析式为y=2x+4,
过点F作FR⊥x轴于点R,
∵D点的横坐标为m,
∴F(﹣m,﹣2m+4),
∴ER=2m,FR=﹣2m+4,
∵EF2=FR2+ER2,
∴l=EF2=8m2﹣16m+16=8(m﹣1)2+8,
令﹣+4=0,得x=,
∴0≤m≤.
∴当m=1时,l的最小值为8,
∴EF的最小值为2.
(3)①∠FBE为定角,不可能为直角.
②∠BEF=90°时,E点与O点重合,D点与A点,F点重合,此时m=0.
③如图3,∠BFE=90°时,有BF2+EF2=BE2.
由(2)得EF2=8m2﹣16m+16,
又∵BR=﹣m+2,FR=﹣2m+4,
∴BF2=BR2+FR2=(﹣m+2)2+(﹣2m+4)2=5m2﹣20m+20,
又∵BE2=(m+2)2,
∴(5m2﹣20m+20)+(8m2﹣16m+16)=(m+2)2,
化简得,3m2﹣10m+8=0,
解得m1=,m2=2(不合题意,舍去),
∴m=.
综合以上可得,当△BEF为直角三角形时,m=0或m=.
10.(2020•湖州)如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连接OA,OB,DA和DB.
(1)如图1,当AC∥x轴时,
①已知点A的坐标是(﹣2,1),求抛物线的解析式;
②若四边形AOBD是平行四边形,求证:b2=4c.
(2)如图2,若b=﹣2,=,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.
【解答】解:(1)①∵AC∥x轴,点A(﹣2,1),
∴C(0,1),
将点A(﹣2,1),C(0,1)代入抛物线解析式中,得,
∴,
∴抛物线的解析式为y=﹣x2﹣2x+1;
②如图1,过点D作DE⊥x轴于E,交AB于点F,
∵AC∥x轴,
∴EF=OC=c,
∵点D是抛物线的顶点坐标,
∴D(,c+),
∴DF=DE﹣EF=c+﹣c=,
∵四边形AOBD是平行四边形,
∴AD=BO,AD∥OB,
∴∠DAF=∠OBC,
∵∠AFD=∠BCO=90°,
∴△AFD≌△BCO(AAS),
∴DF=OC,
∴=c,
即b2=4c;
(2)方法1、如图2,∵b=﹣2.
∴抛物线的解析式为y=﹣x2﹣2x+c,
∴顶点坐标D(﹣1,c+1),
假设存在这样的点A使四边形AOBD是平行四边形,
设点A(m,﹣m2﹣2m+c)(m<0),
过点D作DE⊥x轴于点E,交AB于F,
∴∠AFD=∠EFC=∠BCO,
∵四边形AOBD是平行四边形,
∴AD=BO,AD∥OB,
∴∠DAF=∠OBC,
∴△AFD≌△BCO(AAS),
∴AF=BC,DF=OC,
过点A作AM⊥y轴于M,交DE于N,
∴DE∥CO,
∴△ANF∽△AMC,
∴=,
∵AM=﹣m,AN=AM﹣NM=﹣m﹣1,
∴,
∴,
∴点A的纵坐标为﹣(﹣)2﹣2×(﹣)+c=c﹣<c,
∵AM∥x轴,
∴点M的坐标为(0,c﹣),N(﹣1,c﹣),
∴CM=c﹣(c﹣)=,
∵点D的坐标为(﹣1,c+1),
∴DN=(c+1)﹣(c﹣)=,
∵DF=OC=c,
∴FN=DN﹣DF=﹣c,
∵=,
∴,
∴c=,
∴c﹣=,
∴点A纵坐标为,
∴A(﹣,),
∴存在这样的点A,使四边形AOBD是平行四边形.
方法2、设点B的横坐标为3a,
∵,
∴A的横坐标为﹣5a,
∵b=﹣2.
∴抛物线的解析式为y=﹣x2﹣2x+c,
∴顶点坐标D的横坐标为﹣1,
假设四边形AOBD是平行四边形,
∴(3a﹣5a)=(﹣1+0),
∴a=,
∴A(﹣,).
11.(2020•浙江)在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B.
(1)求该抛物线的函数表达式.
(2)当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m.
①求OD的长.
②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3).东东起跳后所持球离地面高度h1(m)(传球前)与东东起跳后时间t(s)满足函数关系式h1=﹣2(t﹣0.5)2+2.7(0≤t≤1);小戴在点F(1.5,0)处拦截,他比东东晚0.3s垂直起跳,其拦截高度h2(m)与东东起跳后时间t(s)的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).
【解答】解:(1)设y=a(x﹣0.4)2+3.32(a≠0),
把x=0,y=3代入,解得a=﹣2,
∴抛物线的函数表达式为y=﹣2(x﹣0.4)2+3.32.
(2)①把y=2.6代入y=﹣2(x﹣0.4)2+3.32,
化简得(x﹣0.4)2=0.36,
解得x1=﹣0.2(舍去),x2=1,
∴OD=1m.
②东东的直线传球能越过小戴的拦截传到点E.
由图1可得,当0≤t≤0.3时,h2=2.2.
当0.3<t≤1.3时,h2=﹣2(t﹣0.8)2+2.7.
当h1﹣h2=0时,t=0.65(s),
东东在点D跳起传球与小戴在点F处拦截的示意图如图2,
设MD=h1,NF=h2,
当点M,N,E三点共线时,过点E作EG⊥MD于点G,交NF于点H,过点N作NP⊥MD于点P,
∴MD∥NF,PN∥EG,
∴∠M=∠HNE,∠MNP=∠NEH,
∴△MPN∽△NHE,
∴,
∵PN=0.5,HE=2.5,
∴NH=5MP.
(Ⅰ)当0≤t≤0.3时,
MP=﹣2(t﹣0.5)2+2.7﹣2.2=﹣2(t﹣0.5)2+0.5,
NH=2.2﹣1.3=0.9.
∴5[﹣2(t﹣0.5)2+0.5]=0.9,
整理得(t﹣0.5)2=0.16,
解得(舍去),(s),
当0≤t≤0.3时,MP随t的增大而增大,
∴.
(Ⅱ)当0.3<t≤0.65时,MP=MD﹣NF=﹣2(t﹣0.5)2+2.7﹣[﹣2(t﹣0.8)2+2.7]=﹣1.2t+0.78,
NH=NF﹣HF=﹣2(t﹣0.8)2+2.7﹣1.3=﹣2(t﹣0.8)2+1.4,
∴﹣2(t﹣0.8)2+1.4=5×(﹣1.2t+0.78),
整理得t2﹣4.6t+1.89=0,
解得,(舍去),(s),
当0.3<t≤0.65时,MP随t的增大而减小,
∴.
(Ⅲ)当0.65<t≤1时,h1<h2,不可能.
综上所述,东东在起跳后传球的时间范围为.
第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江): 这是一份第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江),共42页。试卷主要包含了,连接AD,BC,BD,,与y轴交于点C,综合与探究,,与x轴交于另一点B,顶点为D等内容,欢迎下载使用。
第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西): 这是一份第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西),共35页。试卷主要包含了在x轴上方的抛物线对称轴上运动,,与y轴交于点C,,对称轴为直线x=2,,顶点为B等内容,欢迎下载使用。
第22章+二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北): 这是一份第22章+二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共73页。