所属成套资源:[中考真题】各版本各地区九年级数学上学期期末复习培优练习
第22章+二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
展开
这是一份第22章+二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共73页。
第22章 二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
一.二次函数的应用(共1小题)
1.(2022•黄石)某校为配合疫情防控需要,每星期组织学生进行核酸抽样检测;防疫部门为了解学生错峰进入操场进行核酸检测情况,调查了某天上午学生进入操场的累计人数y(单位:人)与时间x(单位:分钟)的变化情况,发现其变化规律符合函数关系式:y=,数据如表.
时间x(分钟)
0
1
2
3
…
8
8<x≤10
累计人数y(人)
0
150
280
390
…
640
640
(1)求a,b,c的值;
(2)如果学生一进入操场就开始排队进行核酸检测,检测点有4个,每个检测点每分钟检测5人,求排队人数的最大值(排队人数=累计人数﹣已检测人数);
(3)在(2)的条件下,全部学生都完成核酸检测需要多少时间?如果要在不超过20分钟让全部学生完成核酸检测,从一开始就应该至少增加几个检测点?
二.二次函数综合题(共21小题)
2.(2022•黄石)如图,抛物线y=﹣x2+x+4与坐标轴分别交于A,B,C三点,P是第一象限内抛物线上的一点且横坐标为m.
(1)A,B,C三点的坐标为 , , .
(2)连接AP,交线段BC于点D,
①当CP与x轴平行时,求的值;
②当CP与x轴不平行时,求的最大值;
(3)连接CP,是否存在点P,使得∠BCO+2∠PCB=90°,若存在,求m的值,若不存在,请说明理由.
3.(2022•襄阳)在平面直角坐标系中,直线y=mx﹣2m与x轴,y轴分别交于A,B两点,顶点为D的抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C.
(1)如图,当m=2时,点P是抛物线CD段上的一个动点.
①求A,B,C,D四点的坐标;
②当△PAB面积最大时,求点P的坐标;
(2)在y轴上有一点M(0,m),当点C在线段MB上时,
①求m的取值范围;
②求线段BC长度的最大值.
4.(2022•荆门)已知抛物线y=ax2+bx+c过点A(﹣2,0),B(4,0),D(0,﹣8).
(1)求抛物线的解析式及顶点E的坐标;
(2)如图,抛物线y=ax2+bx+c向上平移,使顶点E落在x轴上的P点,此时的抛物线记为C,过P作两条互相垂直的直线与抛物线C交于不同于P的M,N两点(M位于N的右侧),过M,N分别作x轴的垂线交x轴于点M1,N1.
①求证:△PMM1∽△NPN1;
②设直线MN的方程为y=kx+m,求证:k+m为常数.
5.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y轴交于点P(0,4).
(1)直接写出抛物线的解析式.
(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.
(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似,若存在,请求出点T的坐标;若不存在,请说明理由.
(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.
6.(2022•湖北)如图,在平面直角坐标系中,已知抛物线y=x2﹣2x﹣3的顶点为A,与y轴交于点C,线段CB∥x轴,交该抛物线于另一点B.
(1)求点B的坐标及直线AC的解析式;
(2)当二次函数y=x2﹣2x﹣3的自变量x满足m≤x≤m+2时,此函数的最大值为p,最小值为q,且p﹣q=2,求m的值;
(3)平移抛物线y=x2﹣2x﹣3,使其顶点始终在直线AC上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.
7.(2022•湖北)抛物线y=x2﹣4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.
(1)直接写出点B和点D的坐标;
(2)如图1,连接OD,P为x轴上的动点,当tan∠PDO=时,求点P的坐标;
(3)如图2,M是点B关于抛物线对称轴的对称点,Q是抛物线上的动点,它的横坐标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E.设△BEQ和△BEM的面积分别为S1和S2,求的最大值.
8.(2021•黄石)抛物线y=ax2﹣2bx+b(a≠0)与y轴相交于点C(0,﹣3),且抛物线的对称轴为x=3,D为对称轴与x轴的交点.
(1)求抛物线的解析式;
(2)在x轴上方且平行于x轴的直线与抛物线从左到右依次交于E、F两点,若△DEF是等腰直角三角形,求△DEF的面积;
(3)若P(3,t)是对称轴上一定点,Q是抛物线上的动点,求PQ的最小值(用含t的代数式表示).
9.(2021•襄阳)如图,直线y=x+1与x,y轴分别交于点B,A,顶点为P的抛物线y=ax2﹣2ax+c过点A.
(1)求出点A,B的坐标及c的值;
(2)若函数y=ax2﹣2ax+c在3≤x≤4时有最大值为a+2,求a的值;
(3)连接AP,过点A作AP的垂线交x轴于点M.设△BMP的面积为S.
①直接写出S关于a的函数关系式及a的取值范围;
②结合S与a的函数图象,直接写出S>时a的取值范围.
10.(2021•鄂州)如图,直线y=﹣x+6与x轴交于点B,与y轴交于点A,点P为线段AB的中点,点Q是线段OA上一动点(不与点O、A重合).
(1)请直接写出点A、点B、点P的坐标;
(2)连接PQ,在第一象限内将△OPQ沿PQ翻折得到△EPQ,点O的对应点为点E.若∠OQE=90°,求线段AQ的长;
(3)在(2)的条件下,设抛物线y=ax2﹣2a2x+a3+a+1(a≠0)的顶点为点C.
①若点C在△PQE内部(不包括边),求a的取值范围;
②在平面直角坐标系内是否存在点C,使|CQ﹣CE|最大?若存在,请直接写出点C的坐标;若不存在,请说明理由.
11.(2021•荆门)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,交y轴于点C(0,﹣3),点Q为线段BC上的动点.
(1)求抛物线的解析式;
(2)求|QO|+|QA|的最小值;
(3)过点Q作PQ∥AC交抛物线的第四象限部分于点P,连接PA,PB,记△PAQ与△PBQ面积分别为S1,S2,设S=S1+S2,求点P坐标,使得S最大,并求此最大值.
12.(2021•荆州)已知:直线y=﹣x+1与x轴、y轴分别交于A,B两点,点C为直线AB上一动点,连接OC,∠AOC为锐角,在OC上方以OC为边作正方形OCDE,连接BE,设BE=t.
(1)如图1,当点C在线段AB上时,判断BE与AB的位置关系,并说明理由;
(2)直接写出点E的坐标(用含t的式子表示);
(3)若tan∠AOC=k,经过点A的抛物线y=ax2+bx+c(a<0)顶点为P,且有6a+3b+2c=0,△POA的面积为,当t=时,求抛物线的解析式.
13.(2021•十堰)已知抛物线y=ax2+bx﹣5与x轴交于点A(﹣1,0)和B(﹣5,0),与y轴交于点C,顶点为P,点N在抛物线对称轴上且位于x轴下方,连AN交抛物线于M,连AC、CM.
(1)求抛物线的解析式;
(2)如图1,当tan∠ACM=2时,求M点的横坐标;
(3)如图2,过点P作x轴的平行线l,过M作MD⊥l于D,若MD=MN,求N点的坐标.
14.(2021•随州)在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C,顶点D的坐标为(1,﹣4).
(1)直接写出抛物线的解析式;
(2)如图1,若点P在抛物线上且满足∠PCB=∠CBD,求点P的坐标;
(3)如图2,M是直线BC上一个动点,过点M作MN⊥x轴交抛物线于点N,Q是直线AC上一个动点,当△QMN为等腰直角三角形时,直接写出此时点M及其对应点Q的坐标.
15.(2021•宜昌)在平面直角坐标系中,抛物线y1=﹣(x+4)(x﹣n)与x轴交于点A和点B(n,0)(n≥﹣4),顶点坐标记为(h1,k1).抛物线y2=﹣(x+2n)2﹣n2+2n+9的顶点坐标记为(h2,k2).
(1)写出A点坐标;
(2)求k1,k2的值(用含n的代数式表示)
(3)当﹣4≤n≤4时,探究k1与k2的大小关系;
(4)经过点M(2n+9,﹣5n2)和点N(2n,9﹣5n2)的直线与抛物线y1=﹣(x+4)(x﹣n),y2=﹣(x+2n)2﹣n2+2n+9的公共点恰好为3个不同点时,求n的值.
16.(2021•恩施州)如图,在平面直角坐标系中,四边形ABCD为正方形,点A,B在x轴上,抛物线y=x2+bx+c经过点B,D(﹣4,5)两点,且与直线DC交于另一点E.
(1)求抛物线的解析式;
(2)F为抛物线对称轴上一点,Q为平面直角坐标系中的一点,是否存在以点Q,F,E,B为顶点的四边形是以BE为边的菱形.若存在,请求出点F的坐标;若不存在,请说明理由;
(3)P为y轴上一点,过点P作抛物线对称轴的垂线,垂足为M,连接ME,BP,探究EM+MP+PB是否存在最小值.若存在,请求出这个最小值及点M的坐标;若不存在,请说明理由.
17.(2021•武汉)抛物线y=x2﹣1交x轴于A,B两点(A在B的左边).
(1)▱ACDE的顶点C在y轴的正半轴上,顶点E在y轴右侧的抛物线上;
①如图(1),若点C的坐标是(0,3),点E的横坐标是,直接写出点A,D的坐标.
②如图(2),若点D在抛物线上,且▱ACDE的面积是12,求点E的坐标.
(2)如图(3),F是原点O关于抛物线顶点的对称点,不平行y轴的直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线只有一个公共点,求证:FG+FH的值是定值.
18.(2021•湖北)已知抛物线y=ax2+bx﹣3与x轴相交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点N(n,0)是x轴上的动点.
(1)求抛物线的解析式;
(2)如图1,若n<3,过点N作x轴的垂线交抛物线于点P,交直线BC于点G.过点P作PD⊥BC于点D,当n为何值时,△PDG≌△BNG;
(3)如图2,将直线BC绕点B顺时针旋转,它恰好经过线段OC的中点,然后将它向上平移个单位长度,得到直线OB1.
①tan∠BOB1= ;
②当点N关于直线OB1的对称点N1落在抛物线上时,求点N的坐标.
19.(2020•荆门)如图,抛物线L:y=x2﹣x﹣3与x轴正半轴交于点A,与y轴交于点B.
(1)求直线AB的解析式及抛物线顶点坐标;
(2)如图1,点P为第四象限且在对称轴右侧抛物线上一动点,过点P作PC⊥x轴,垂足为C,PC交AB于点D,求PD+BD的最大值,并求出此时点P的坐标;
(3)如图2,将抛物线L:y=x2﹣x﹣3向右平移得到抛物线L',直线AB与抛物线L'交于M,N两点,若点A是线段MN的中点,求抛物线L'的解析式.
20.(2020•孝感)在平面直角坐标系中,已知抛物线y=ax2+4ax+4a﹣6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.
(1)当a=6时,直接写出点A,B,C,D的坐标:
A ,B ,C ,D ;
(2)如图1,直线DC交x轴于点E,若tan∠AED=,求a的值和CE的长;
(3)如图2,在(2)的条件下,若点N为OC的中点,动点P在第三象限的抛物线上,过点P作x轴的垂线,垂足为Q,交AN于点F;过点F作FH⊥DE,垂足为H.设点P的横坐标为t,记f=FP+FH.
①用含t的代数式表示f;
②设﹣5<t≤m(m<0),求f的最大值.
21.(2020•武汉)将抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.
(1)直接写出抛物线C1,C2的解析式;
(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;
(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=﹣x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.
22.(2020•襄阳)如图,直线y=﹣x+2交y轴于点A,交x轴于点C,抛物线y=﹣x2+bx+c经过点A,点C,且交x轴于另一点B.
(1)直接写出点A,点B,点C的坐标及抛物线的解析式;
(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标;
(3)将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,若线段O′A′与抛物线只有一个公共点,请结合函数图象,求m的取值范围.
第22章 二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
参考答案与试题解析
一.二次函数的应用(共1小题)
1.(2022•黄石)某校为配合疫情防控需要,每星期组织学生进行核酸抽样检测;防疫部门为了解学生错峰进入操场进行核酸检测情况,调查了某天上午学生进入操场的累计人数y(单位:人)与时间x(单位:分钟)的变化情况,发现其变化规律符合函数关系式:y=,数据如表.
时间x(分钟)
0
1
2
3
…
8
8<x≤10
累计人数y(人)
0
150
280
390
…
640
640
(1)求a,b,c的值;
(2)如果学生一进入操场就开始排队进行核酸检测,检测点有4个,每个检测点每分钟检测5人,求排队人数的最大值(排队人数=累计人数﹣已检测人数);
(3)在(2)的条件下,全部学生都完成核酸检测需要多少时间?如果要在不超过20分钟让全部学生完成核酸检测,从一开始就应该至少增加几个检测点?
【解答】解:(1)由题意,,
解得,;
(2)设第x分钟时的排队人数为W,
根据题意得:W=y﹣20x,
∴W=,
当0≤x≤8时,
W=﹣10x2+140x=﹣10(x﹣7)2+490,
∴当x=7时,W最大=490,
当x>8时,W=640﹣20x,
∵k=﹣20<0,
∴W随x的增大而减小,
∴W<480,
故排队人数最多时有490人;
(3)要全部学生都完成核酸检测,根据题意得:640﹣20x=0,
解得:x=32,
所以全部学生都完成核酸检测要32分钟;
开始就应该至少增加m个检测点,根据题意得:
5×20(m+4)≥640,
解得:m≥2.4,
∵m为整数,
∴m=3,
答:从一开始就应该至少增加3个检测点.
二.二次函数综合题(共21小题)
2.(2022•黄石)如图,抛物线y=﹣x2+x+4与坐标轴分别交于A,B,C三点,P是第一象限内抛物线上的一点且横坐标为m.
(1)A,B,C三点的坐标为 (﹣2,0) , (3,0) , (0,4) .
(2)连接AP,交线段BC于点D,
①当CP与x轴平行时,求的值;
②当CP与x轴不平行时,求的最大值;
(3)连接CP,是否存在点P,使得∠BCO+2∠PCB=90°,若存在,求m的值,若不存在,请说明理由.
【解答】解:(1)令x=0,则y=4,
∴C(0,4);
令y=0,则﹣x2+x+4=0,
∴x=﹣2或x=3,
∴A(﹣2,0),B(3,0).
故答案为:(﹣2,0);(3,0);(0,4).
(2)①∵CP∥x轴,C(0,4),
∴P(1,4),
∴CP=1,AB=5,
∵CP∥x轴,
∴==.
②如图,过点P作PQ∥AB交BC于点Q,
∴直线BC的解析式为:y=﹣x+4.
设点P的横坐标为m,
则P(m,﹣m2+m+4),Q(m2﹣m,﹣m2+m+4).
∴PQ=m﹣(m2﹣m)=﹣m2+m,
∵PQ∥AB,
∴===﹣(m﹣)2+,
∴当m=时,的最大值为.
另解:分别过点P,A作y轴的平行线,交直线BC于两点,仿照以上解法即可求解.
(3)假设存在点P使得∠BCO+2∠BCP=90°,即0<m<3.
过点C作CF∥x轴交抛物线于点F,
∵∠BCO+2∠PCB=90°,∠BCO+∠BCF+∠MCF=90°,
∴∠MCF=∠BCP,
延长CP交x轴于点M,
∵CF∥x轴,
∴∠PCF=∠BMC,
∴∠BCP=∠BMC,
∴△CBM为等腰三角形,
∵BC=5,
∴BM=5,OM=8,
∴M(8,0),
∴直线CM的解析式为:y=﹣x+4,
令﹣x2+x+4=﹣x+4,
解得x=或x=0(舍),
∴存在点P满足题意,此时m=.
3.(2022•襄阳)在平面直角坐标系中,直线y=mx﹣2m与x轴,y轴分别交于A,B两点,顶点为D的抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C.
(1)如图,当m=2时,点P是抛物线CD段上的一个动点.
①求A,B,C,D四点的坐标;
②当△PAB面积最大时,求点P的坐标;
(2)在y轴上有一点M(0,m),当点C在线段MB上时,
①求m的取值范围;
②求线段BC长度的最大值.
【解答】解:(1)∵直线y=mx﹣2m与x轴,y轴分别交于A,B两点,
∴A(2,0),B(0,﹣2m);
∵y=﹣(x﹣m)2+2,
∴抛物线的顶点为D(m,2),
令x=0,则y=﹣m2+2,
∴C(0,﹣m2+2).
①当m=2时,﹣2m=﹣4,﹣m2+2=﹣2,
∴B(0,﹣4),C(0,﹣2),D(2,2).
②由上可知,直线AB的解析式为:y=2x﹣4,抛物线的解析式为:y=﹣x2+4x﹣2.
如图,过点P作PE∥y轴交直线AB于点E,
设点P的横坐标为t,
∴P(t,﹣t2+4t﹣2),E(t,2t﹣4).
∴PE=﹣t2+4t﹣2﹣(2t﹣4)=﹣t2+2t+2,
∴△PAB的面积为:×(2﹣0)×(﹣t2+2t+2)=﹣(t﹣1)2+3,
∵﹣1<0,
∴当t=1时,△PAB的面积的最大值为3.
此时P(1,1).
(2)由(1)可知,B(0,﹣2m),C(0,﹣m2+2),
①∵y轴上有一点M(0,m),点C在线段MB上,
∴需要分两种情况:
当m≥﹣m2+2≥﹣2m时,可得≤m≤1+,
当m≤﹣m2+2≤﹣2m时,可得﹣3≤m≤1﹣,
∴m的取值范围为:≤m≤1+或﹣3≤m≤1﹣.
②当≤m≤1+时,
∵BC=﹣m2+2﹣(﹣2m)=﹣m2+2m+2=﹣(m﹣1)2+3,
∴当m=1时,BC的最大值为3;
当m≤﹣m2+2≤﹣2m时,即﹣3≤m≤1﹣,
∴BC=﹣2m﹣(﹣m2+2)=m2﹣2m﹣2=(m﹣1)2﹣3,
当m=﹣3时,点M与点C重合,BC的最大值为13.
∴当m=﹣3时,BC的最大值为13.
4.(2022•荆门)已知抛物线y=ax2+bx+c过点A(﹣2,0),B(4,0),D(0,﹣8).
(1)求抛物线的解析式及顶点E的坐标;
(2)如图,抛物线y=ax2+bx+c向上平移,使顶点E落在x轴上的P点,此时的抛物线记为C,过P作两条互相垂直的直线与抛物线C交于不同于P的M,N两点(M位于N的右侧),过M,N分别作x轴的垂线交x轴于点M1,N1.
①求证:△PMM1∽△NPN1;
②设直线MN的方程为y=kx+m,求证:k+m为常数.
【解答】(1)解:将A(﹣2,0),B(4,0),D(0,﹣8)代入y=ax2+bx+c,
∴,
解得,
∴y=x2﹣2x﹣8,
∵y=x2﹣2x﹣8=(x﹣1)2﹣9,
∴E(1,﹣9);
(2)①证明:∵PN⊥PM,
∴∠MPN=90°,
∴∠NPN1+∠MPM1=90°,
∵NN1⊥x轴,MM1⊥x轴,
∴∠NN1P=∠MM1P=90°,
∴∠N1PN+∠PNN1=90°,
∴∠MPM1=∠PNN1,
∴△PMM1∽△NPN1;
②证明:由题意可知平移后的抛物线解析式为y=(x﹣1)2,
设N(x1,kx1+m),M(x2,kx2+m),
联立方程组y=,
整理得x2﹣(2+k)x+1﹣m=0,
∴x1+x2=2+k,x1•x2=1﹣m,
∵△PMM1∽△NPN1,
∴=,即=,
∴k+m=(k+m)2,
∴k+m=1或k+m=0,
∵M、N与P不重合,
∴k+m=1,
∴k+m为常数.
5.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y轴交于点P(0,4).
(1)直接写出抛物线的解析式.
(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.
(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似,若存在,请求出点T的坐标;若不存在,请说明理由.
(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.
【解答】解:(1)∵抛物线y=﹣x2+c与y轴交于点P(0,4),
∴c=4,
∴抛物线的解析式为y=﹣x2+4;
(2)△BCQ是直角三角形.理由如下:
将抛物线y=﹣x2+4向左平移1个单位长度,得新抛物线y=﹣(x+1)2+4,
∴平移后的抛物线顶点为Q(﹣1,4),
令x=0,得y=﹣1+4=3,
∴C(0,3),
令y=0,得﹣(x+1)2+4=0,
解得:x1=1,x2=﹣3,
∴B(﹣3,0),A(1,0),
如图1,连接BQ,CQ,PQ,
∵P(0,4),Q(﹣1,4),
∴PQ⊥y轴,PQ=1,
∵CP=4﹣3=1,
∴PQ=CP,∠CPQ=90°,
∴△CPQ是等腰直角三角形,
∴∠PCQ=45°,
∵OB=OC=3,∠BOC=90°,
∴△BOC是等腰直角三角形,
∴∠BCO=45°,
∴∠BCQ=180°﹣45°﹣45°=90°,
∴△BCQ是直角三角形.
(3)在x轴上存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似.
∵△ABC是锐角三角形,∠ABC=45°,
∴以B、N、T三点为顶点的三角形与△ABC相似,必须∠NBT=∠ABC=45°,
即点T在y轴的右侧,
设T(x,0),且x>0,则BT=x+3,
∵B(﹣3,0),A(1,0),C(0,3),
∴∠ABC=45°,AB=4,BC=3,
设直线BC的解析式为y=kx+b,
则,
解得:,
∴直线BC的解析式为y=x+3,
由,
解得:,,
∴M(﹣,),N(,),
∴BN=×=,
①当△NBT∽△CBA时,则=,
∴=,
解得:x=,
∴T(,0);
②当△NBT∽△ABC时,则=,
∴=,
解得:x=,
∴T(,0);
综上所述,点T的坐标T(,0)或(,0).
(4)抛物线y=﹣x2+4的顶点为P(0,4),
∵直线BC的解析式为y=x+3,
∴直线BC与y轴的夹角为45°,当抛物线沿着垂直直线BC的方向平移到只有1个公共点时,平移距离最小,此时向右和向下平移距离相等,
设平移后的抛物线的顶点为P′(t,4﹣t),
则平移后的抛物线为y=﹣(x﹣t)2+4﹣t,
由﹣(x﹣t)2+4﹣t=x+3,
整理得:x2+(1﹣2t)x+t2+t﹣1=0,
∵平移后的抛物线与直线BC最多只有一个公共点,
∴Δ=(1﹣2t)2﹣4(t2+t﹣1)=0,
解得:t=,
∴平移后的抛物线的顶点为P′(,),平移的最短距离为.
6.(2022•湖北)如图,在平面直角坐标系中,已知抛物线y=x2﹣2x﹣3的顶点为A,与y轴交于点C,线段CB∥x轴,交该抛物线于另一点B.
(1)求点B的坐标及直线AC的解析式;
(2)当二次函数y=x2﹣2x﹣3的自变量x满足m≤x≤m+2时,此函数的最大值为p,最小值为q,且p﹣q=2,求m的值;
(3)平移抛物线y=x2﹣2x﹣3,使其顶点始终在直线AC上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.
【解答】解:(1)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴顶点A(1,﹣4),
令x=0,则y=﹣3,
∴C(0,﹣3),
∵CB∥x轴,
∴B(2,﹣3),
设直线AC解析式为y=kx+b,
,
解得,
∴y=﹣x﹣3;
(2)∵抛物线y=x2﹣2x﹣3的对称轴为直线x=1,
①当m>1时,
x=m时,q=m2﹣2m﹣3,
x=m+2时,p=(m+2)2﹣2(m+2)﹣3,
∴p﹣q=(m+2)2﹣2(m+2)﹣3﹣m2+2m+3=2,
解得m=(舍);
②当m+2<1,即m<﹣1,
x=m时,p=m2﹣2m﹣3,
x=m+2时,q=(m+2)2﹣2(m+2)﹣3,
∴p﹣q=m2﹣2m﹣3﹣(m+2)2+2(m+2)+3=2,
解得m=﹣(舍);
③当m≤1≤m+1,即0≤m≤1,
x=1时,q=﹣4,
x=m+2时,p=(m+2)2﹣2(m+2)﹣3,
∴p﹣q=(m+2)2﹣2(m+2)﹣3+4=2,
解得m=﹣1或m=﹣﹣1(舍);
④当m+1<1≤m+2,即﹣1≤m<0,
x=1时,q=﹣4,
x=m时,p=m2﹣2m﹣3,
∴p﹣q=m2﹣2m﹣3+4=2,
解得m=1+(舍)或m=1﹣,
综上所述:m的值﹣1或1﹣;
(3)设直线AC的解析式为y=kx+b,
∴,
解得,
∴y=﹣x﹣3,
①如图1,当抛物线向左平移h个单位,则向上平移h个单位,
∴平移后的抛物线解析式为y=(x﹣1+h)2﹣4+h,
设直线BA的解析式为y=k'x+b',
∴,
解得,
∴y=x﹣5,
联立方程组,
整理得x2﹣(3﹣2h)x+h2﹣h+2=0,
当Δ=0时,(3﹣2h)2﹣4(h2﹣h+2)=0,
解得h=,
此时抛物线的顶点为(,﹣),此时平移后的抛物线与射线BA只有一个公共点;
②如图2,当抛物线向右平移k个单位,则向下平移k个单位,
∴平移后的抛物线解析式为y=(x﹣1﹣k)2﹣4﹣k,
当抛物线经过点B时,(2﹣1﹣k)2﹣4﹣k=﹣3,
解得k=0(舍)或k=3,
此时抛物线的顶点坐标为(4,﹣7),此时平移后的抛物线与射线BA只有一个公共点,
当抛物线的顶点为(1,﹣4)时,平移后的抛物线与射线BA有两个公共点,
∴综上所述:1<n≤4或n=.
7.(2022•湖北)抛物线y=x2﹣4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.
(1)直接写出点B和点D的坐标;
(2)如图1,连接OD,P为x轴上的动点,当tan∠PDO=时,求点P的坐标;
(3)如图2,M是点B关于抛物线对称轴的对称点,Q是抛物线上的动点,它的横坐标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E.设△BEQ和△BEM的面积分别为S1和S2,求的最大值.
【解答】解:(1)令y=x2﹣4x=x,
解得x=0或x=5,
∴B(5,5);
∵y=x2﹣4x=(x﹣2)2﹣4,
∴顶点D(2,﹣4).
(2)如图,过点D作DE⊥y轴于点E,
∴DE=2,OE=4,
∴tan∠DOE=,
∵tan∠PDO=,
∴∠DOE=∠PDO,
①当点P在线段OD的右侧时,DP∥y轴,如图,
∴P(2,0);
②当点P在线段OD左侧时,设直线DP与y轴交于点G,则△ODG是等腰三角形,
∴OG=DG,
设OG=t,则DG=t,GE=4﹣t,
在Rt△DGE中,t2=22+(4﹣t)2,
解得t=,
∴G(0,﹣),
∴直线DG的解析式为:y=﹣x﹣,
令y=0,则﹣x﹣=0,
解得x=﹣,
∴P(﹣,0).
综上,点P的坐标为(2,0)或(﹣,0).
(3)∵点B(5,5)与点M关于对称轴x=2对称,
∴M(﹣1,5).
如图,分别过点M,Q作y轴的平行线,交直线OB于点N,K,
∴N(﹣1,﹣1),MN=6,
∵点Q横坐标为m,
∴Q(m,m2﹣4m),K(m,m),
∴KQ=m﹣(m2﹣4m)=﹣m2+5m.
∵S1=QK(xB﹣xE),S2=MN(xB﹣xE),
∴==﹣(m2﹣5m)=﹣(m﹣)2+,
∵﹣<0,
∴当m=时,的最大值为.
8.(2021•黄石)抛物线y=ax2﹣2bx+b(a≠0)与y轴相交于点C(0,﹣3),且抛物线的对称轴为x=3,D为对称轴与x轴的交点.
(1)求抛物线的解析式;
(2)在x轴上方且平行于x轴的直线与抛物线从左到右依次交于E、F两点,若△DEF是等腰直角三角形,求△DEF的面积;
(3)若P(3,t)是对称轴上一定点,Q是抛物线上的动点,求PQ的最小值(用含t的代数式表示).
【解答】解:(1)由题意得:,解得,
故抛物线的表达式为y=﹣x2+6x﹣3;
(2)∵△DEF是等腰直角三角形,
故DE=DF且∠EDF=90°,
故设EF和x轴之间的距离为m,则EF=2m,
故点F(3+m,m),
则△DEF的面积=EF•m=2m•m=m2,
将点F的坐标代入抛物线表达式得:m=﹣(m+3)2+6(m+3)﹣3,
解得m=﹣3(舍去)或2,
则△DEF的面积=m2=4;
(3)∵y=﹣x2+6x﹣3=﹣(x﹣3)2+6,
∴抛物线y=﹣x2+6x﹣3的顶点为(3,6).
设点Q的坐标为(p,q)(q≤6),
∵点Q在抛物线y=﹣x2+6x﹣3上,
∴q=﹣p2+6p﹣3
则PQ2=(p﹣3)2+(q﹣t)2=p2﹣6p+9+q2﹣2tq+t2,
将q=﹣p2+6p﹣3代入上式得:
PQ2=q2﹣(2t+1)q+t2+6.
∵二次项系数为1>0,
∴PQ2有最小值,
当t>时,>6,
∴q=6时,PQ2最小,即PQ最小.
≤36﹣12t﹣6+t2+6=t2﹣12t+36=(t﹣6)2,
∴PQ=|t﹣6|=.
当t≤时,≤6,
∴q=时,PQ2最小,即PQ最小.
∴PQ2=,
∴PQ的最小值为.
综上所述PQ的最小值=.
9.(2021•襄阳)如图,直线y=x+1与x,y轴分别交于点B,A,顶点为P的抛物线y=ax2﹣2ax+c过点A.
(1)求出点A,B的坐标及c的值;
(2)若函数y=ax2﹣2ax+c在3≤x≤4时有最大值为a+2,求a的值;
(3)连接AP,过点A作AP的垂线交x轴于点M.设△BMP的面积为S.
①直接写出S关于a的函数关系式及a的取值范围;
②结合S与a的函数图象,直接写出S>时a的取值范围.
【解答】解:(1)∵直线y=x+1与x,y轴分别交于点B,A,
∴点A(0,1),点B(﹣2,0),
∵抛物线y=ax2﹣2ax+c过点A,
∴c=1;
(2)∵y=ax2﹣2ax+1=a(x﹣1)2+1﹣a,
∴对称轴为直线x=1,
当a>0,3≤x≤4时,y随x的增大而增大,
∴当x=4时,y有最大值,
∴9a+1﹣a=a+2,
解得:a=;
当a<0,3≤x≤4时,y随x的增大而减小,
∴当x=3时,y有最大值,
∴4a+1﹣a=a+2,
解得:a=(不合题意舍去),
综上所述:a=;
(3)①当a<0时,则1﹣a>1,
如图1,过点P作PN⊥y轴于N,
∵y=ax2﹣2ax+1=a(x﹣1)2+1﹣a,
∴点P坐标为(1,1﹣a),
∴PN=AO=1,AN=1﹣a﹣1=﹣a,
∵AM⊥AP,PN⊥y轴,
∴∠PNA=∠PAM=90°=∠AOM,
∴∠PAN+∠OAM=90°,∠OAM+∠AMO=90°,
∴∠PAN=∠AMO,
∴△AOM≌△PNA(AAS),
∴OM=AN=﹣a,
∴BM=2﹣a,
∴S=×(2﹣a)(1﹣a)=a2﹣a+1;
当a>0,1﹣a>0时,即0<a<1,
如图2,过点P作PN⊥y轴于N,
∴PN=1=OA,AN=1﹣(1﹣a)=a,
同理可得△AOM≌△PNA,
∴OM=AN=a,
∴BM=2﹣a,
∴S=×(2﹣a)(1﹣a)=a2﹣a+1;
当a>0,﹣1<1﹣a<0时,即1<a<2,
如图3,过点P作PN⊥y轴于N,
∴PN=1=OA,ON=a﹣1,AN=1+a﹣1=a,
同理可得△AOM≌△PNA,
∴OM=AN=a,
∴BM=2﹣a,
∴S=×(2﹣a)(a﹣1)=﹣a2+a﹣1;
当a=2时,点B与点M重合,不合题意,
当a>0,1﹣a<﹣1时,即a>2,
如图4,过点P作PN⊥y轴于N,
∴PN=1=OA,ON=a﹣1,AN=1+a﹣1=a,
同理可得△AOM≌△PNA,
∴OM=AN=a,
∴BM=a﹣2,
∴S=×(a﹣2)(a﹣1)=a2﹣a+1;
综上所述:S=.
②当1<a<2时,S=﹣a2+a﹣1=﹣(a﹣)2+≤,
∴当1<a<2时,不存在a的值使S>;
当a<1且a≠0时,S=a2﹣a+1>,
∴(a﹣)(a﹣)>0,
∴a<或a>(不合题意舍去);
当a>2时,S=a2﹣a+1>,
∴(a﹣)(a﹣)>0,
∴a<(不合题意舍去)或a>,
综上所述:a<且a≠0或a>.
10.(2021•鄂州)如图,直线y=﹣x+6与x轴交于点B,与y轴交于点A,点P为线段AB的中点,点Q是线段OA上一动点(不与点O、A重合).
(1)请直接写出点A、点B、点P的坐标;
(2)连接PQ,在第一象限内将△OPQ沿PQ翻折得到△EPQ,点O的对应点为点E.若∠OQE=90°,求线段AQ的长;
(3)在(2)的条件下,设抛物线y=ax2﹣2a2x+a3+a+1(a≠0)的顶点为点C.
①若点C在△PQE内部(不包括边),求a的取值范围;
②在平面直角坐标系内是否存在点C,使|CQ﹣CE|最大?若存在,请直接写出点C的坐标;若不存在,请说明理由.
【解答】解:(1)∵直线y=﹣x+6与x轴交于点B,与y轴交于点A,
∴点A(0,6),点B(4,0),
∵点P是线段AB中点,
∴点P(2,3);
(2)过点P作PF⊥OA于F,
∵将△OPQ沿PQ翻折得到△EPQ,∠OQE=90°,
∴∠OQP=∠OQE=45°,OQ=QE,
∴QF=PF,
∵点P(2,3),
∴QF=PF=2,OF=3,
∴OQ=5,
∵点A(0,6),
∴AO=6,
∴AQ=6﹣5=1,
即AQ的长为1;
(3)①y=a(x2﹣2ax+a2)+a+1=a(x﹣a)2+a+1,
∴顶点C的坐标为(a,a+1),
∴点C是直线y=x+1(x≠0)上一点,
∵∠OQE=90°,OQ=5,
∴当y=5时,x=4,
又∵点P(2,3)在直线y=x+1上,
∴当点C在△PQE内部(不含边)时,a的取值范围是2<a<4;
②存在点C使|CQ﹣CE|最大,
理由如下:∵OQ=QE=5,∠OQE=90°,
∴点E(5,5),
如图3,作点E关于直线y=x+1的对称点E'(4,6),连接QE'交直线y=x+1于点C,此时|CQ﹣CE|最大,
设直线QC的解析式为y=kx+5,
∴6=4k+5,
∴k=,
∴直线QC的解析式为y=x+5,
联立方程组可得,
解得:,
∴点C坐标为.
11.(2021•荆门)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,交y轴于点C(0,﹣3),点Q为线段BC上的动点.
(1)求抛物线的解析式;
(2)求|QO|+|QA|的最小值;
(3)过点Q作PQ∥AC交抛物线的第四象限部分于点P,连接PA,PB,记△PAQ与△PBQ面积分别为S1,S2,设S=S1+S2,求点P坐标,使得S最大,并求此最大值.
【解答】解:(1)∵抛物线交x轴于A(﹣1,0),B(3,0)两点,
∴设y=a(x+1)(x﹣3),将C(0,﹣3)代入,
得:﹣3a=﹣3,
解得:a=1,
∴y=(x+1)(x﹣3)=x2﹣2x﹣3,
∴抛物线的解析式为y=x2﹣2x﹣3;
(2)如图1,作点O关于直线BC的对称点O′,连接AO′,QO′,CO′,BO′,
∵OB=OC=3,∠BOC=90°,
∴∠BCO=45°,
∵O、O′关于直线BC对称,
∴BC垂直平分OO′,
∴OO′垂直平分BC,
∴四边形BOCO′是正方形,
∴O′(3,﹣3),
在Rt△ABO′中,|AO′|===5,
∵|QA|+|QO′|≥|AO′|,|QO′|=|QO|,
∴|QO|+|QA|=|QA|+|QO′|≥|AO′|=5,即点Q位于直线AO′与直线BC交点时,|QO|+|QA|有最小值5;
(3)如图2,连接CP,过点P作PH∥y轴交BC于点H,
设直线BC的解析式为y=kx+d,
∵B(3,0),C(0,﹣3),
∴,
解得:,
∴直线BC的解析式为y=x﹣3,
∵PQ∥AC,
∴S△PAQ=S△PCQ,
∴S=S△PAQ+S△PBQ=S△PBC,
设P(m,m2﹣2m﹣3),则H(m,m﹣3),
∴PH=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,
∴S=OB•PH=×3(﹣m2+3m)=﹣m2+m=﹣(m﹣)2+,
由题意,得0<m<3,
∴m=时,S最大,
即P(,﹣)时,S有最大值.
12.(2021•荆州)已知:直线y=﹣x+1与x轴、y轴分别交于A,B两点,点C为直线AB上一动点,连接OC,∠AOC为锐角,在OC上方以OC为边作正方形OCDE,连接BE,设BE=t.
(1)如图1,当点C在线段AB上时,判断BE与AB的位置关系,并说明理由;
(2)直接写出点E的坐标(用含t的式子表示);
(3)若tan∠AOC=k,经过点A的抛物线y=ax2+bx+c(a<0)顶点为P,且有6a+3b+2c=0,△POA的面积为,当t=时,求抛物线的解析式.
【解答】解:(1)直线y=﹣x+1与x轴、y轴分别交于A,B两点,
则点A、B的坐标分别为(1,0)、(0,1),
则∠OBA=∠OAB=45°,
∵∠AOC+∠BOC=90°,∠BOC+∠BOE=90°,
∴∠AOC=∠BOE,
∵AO=BO,OC=OE,
∴△OAC≌△OBE(SAS),
∴∠OBE=∠OAC=45°,AC=BE=t,
∴∠EBA=∠EBO+∠OBA=∠OAC+∠OBA=45°+45°=90°,
∴BE⊥AB;
(2)①当点C在线段AB上时,如图1﹣1,
过点E作EH⊥OB于点H,
∵∠EBH=45°,
∴BH=EH=BE=t,
故点E的坐标为(﹣t,1﹣t);
②当点C在线段BA的延长线上时,如图1﹣2,
同理可得,点E的坐标为(t,1+t);
综上,点E的坐标为(﹣t,1﹣t)或(t,1+t);
(3)①当点C线段AB上时,如题图1﹣1,
过点C作CN⊥OA于点N,
当t=时,即AC=t=,
则CN=AN=t=,
则ON=OA﹣NA=1﹣=CN,
故tan∠AOC==1=k,
∵△POA的面积=×AO×yP=×1×yP==,
解得yP=1=c﹣①,
∵抛物线过点A(1,0),故a+b+c=0②,
而6a+3b+2c=0③,
联立①②③并解得,
∴抛物线的表达式为y=﹣x2+4x﹣3;
②抛物线过点A,则a+b+c=0,
而6a+3b+2c=0,
联立上述两式并解得:,
故抛物线的表达式为y=a(x﹣2)2﹣a(a<0),
则点P的坐标为(2,﹣a),
则AC=BE=t=,
则tan∠AOC=k==,
故a=﹣3,
故y=﹣3x2+12x﹣9.
综上,y=﹣3x2+12x﹣9或y=﹣x2+4x﹣3.
13.(2021•十堰)已知抛物线y=ax2+bx﹣5与x轴交于点A(﹣1,0)和B(﹣5,0),与y轴交于点C,顶点为P,点N在抛物线对称轴上且位于x轴下方,连AN交抛物线于M,连AC、CM.
(1)求抛物线的解析式;
(2)如图1,当tan∠ACM=2时,求M点的横坐标;
(3)如图2,过点P作x轴的平行线l,过M作MD⊥l于D,若MD=MN,求N点的坐标.
【解答】解:(1)∵抛物线y=ax2+bx﹣5与x轴交于点A(﹣1,0)和B(﹣5,0),
∴,
解得:,
∴该抛物线的解析式为:y=﹣x2﹣6x﹣5;
(2)在y=﹣x2﹣6x﹣5中,令x=0,则y=﹣5,
∴C(0,﹣5),
∴OC=5,
如图1,过点A作AF⊥AC交直线CM于点F,过点F作FE⊥x轴于点E,
∴∠AEF=∠CAF=∠AOC=90°,
∴∠EAF+∠CAO=∠CAO+∠ACO=90°,
∴∠EAF=∠ACO,
∴△AEF∽△COA,
∴===tan∠ACM=2,
∴EF=2OA=2,AE=2OC=10,
∴OE=OA+AE=1+10=11,
∴F(﹣11,﹣2),
设直线CF解析式为y=kx+c,
∵C(0,﹣5),F(﹣11,﹣2),
∴,
解得:,
∴直线CF解析式为y=﹣x﹣5,
结合抛物线:y=﹣x2﹣6x﹣5,得:﹣x2﹣6x﹣5=﹣x﹣5,
解得:x1=0(舍),x2=﹣,
∴点M的横坐标为﹣;
(3)∵y=﹣x2﹣6x﹣5=﹣(x+3)2+4,
∴顶点P(﹣3,4),
设N(﹣3,n),直线AN解析式为y=k1x+c1,
∵A(﹣1,0),N(﹣3,n),
∴,
解得:,
∴直线AN解析式为y=nxn,
结合抛物线y=﹣x2﹣6x﹣5,得:﹣x2﹣6x﹣5=nxn,
解得:x1=﹣1(舍),x2=n﹣5,
当x=n﹣5时,y=n×(n﹣5)n=﹣n2+2n,
∴M(n﹣5,﹣n2+2n),
∵PD∥x轴,MD⊥PD,
∴D(n﹣5,4),
∴MD=4﹣(﹣n2+2n)=n2﹣2n+4,
如图2,过点M作MG⊥PN于点G,
则MG=﹣3﹣(n﹣5)=2﹣n,NG=n﹣(﹣n2+2n)=n2﹣n,
∵∠MGN=90°,
∴MN2=MG2+NG2=(2﹣n)2+(n2﹣n)2=(n2+4)(n﹣4)2,
∵MD=MN,
∴MD2=3MN2,
∴(n2﹣2n+4)2=3×(n2+4)(n﹣4)2,
∴(n﹣4)4=(n2+4)(n﹣4)2,
∵点N在抛物线对称轴上且位于x轴下方,
∴n<0,
∴n﹣4<0,
∴(n﹣4)2>0,
∴(n﹣4)2=3(n2+4),
解得:n1=﹣2(舍),n2=﹣﹣2,
∴N(﹣3,﹣﹣2).
14.(2021•随州)在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C,顶点D的坐标为(1,﹣4).
(1)直接写出抛物线的解析式;
(2)如图1,若点P在抛物线上且满足∠PCB=∠CBD,求点P的坐标;
(3)如图2,M是直线BC上一个动点,过点M作MN⊥x轴交抛物线于点N,Q是直线AC上一个动点,当△QMN为等腰直角三角形时,直接写出此时点M及其对应点Q的坐标.
【解答】解:(1)∵顶点D的坐标为(1,﹣4),
∴设抛物线的解析式为y=a(x﹣1)2﹣4,将点A(﹣1,0)代入,
得0=a(﹣1﹣1)2﹣4,
解得:a=1,
∴y=(x﹣1)2﹣4=x2﹣2x﹣3,
∴该抛物线的解析式为y=x2﹣2x﹣3;
(2)∵抛物线对称轴为直线x=1,A(﹣1,0),
∴B(3,0),
设直线BD解析式为y=kx+e,
∵B(3,0),D(1,﹣4),
∴,
解得:,
∴直线BD解析式为y=2x﹣6,
①当点P在直线BC的上方时,如图1,过点C作CP1∥BD,交抛物线于点P1,
设直线CP1的解析式为y=2x+d,将C(0,﹣3)代入,
得﹣3=2×0+d,
解得:d=﹣3,
∴直线CP1的解析式为y=2x﹣3,
结合抛物线y=x2﹣2x﹣3,可得x2﹣2x﹣3=2x﹣3,
解得:x1=0(舍),x2=4,
故P1(4,5);
②当点P在直线BC的下方时,
方法一:如图1,过点B作y轴平行线,过点C作x轴平行线交于点G,
∵OB=OC,∠BOC=∠OBG=∠OCG=90°,
∴四边形OBGC是正方形,
设CP1与x轴交于点E,则2x﹣3=0,
解得:x=,
∴E(,0),
在x轴下方作∠BCF=∠BCE交BG于点F,
∵四边形OBGC是正方形,
∴OC=CG=BG=3,∠COE=∠G=90°,∠OCB=∠GCB=45°,
∴∠OCB﹣∠BCE=∠GCB﹣∠BCF,
即∠OCE=∠GCF,
∴△OCE≌△GCF(ASA),
∴FG=OE=,
∴BF=BG﹣FG=3﹣=,
∴F(3,﹣),
设直线CF解析式为y=k1x+e1,
∵C(0,﹣3),F(3,﹣),
∴,
解得:,
∴直线CF解析式为y=x﹣3,
结合抛物线y=x2﹣2x﹣3,可得x2﹣2x﹣3=x﹣3,
解得:x1=0(舍),x2=,
∴P2(,﹣),
方法二:如图1′,连接CD,取BD的中点F,连接CF并延长交抛物线于点P,过点D作DT⊥y轴于点T,
∵B(3,0),C(0,﹣3),D(1,﹣4),
∴OB=OC=3,CT=DT=1,
∵∠BOC=∠CTD=90°,
∴△BOC和△CDT均为等腰直角三角形,
∴∠BCO=∠DCT=45°,
∴∠BCD=180°﹣45°﹣45°=90°,
∵点F是BC的中点,
∴CF=BF=DF,
∴∠PCB=∠CBD,
∵F(,),即F(2,﹣2),
设直线CF的解析式为y=k2x+e2,则,
解得:,
∴直线CF的解析式为y=x﹣3,
由x2﹣2x﹣3=x﹣3,解得:x=0(舍去)或x=,
∴P(,﹣);
综上所述,符合条件的P点坐标为:P1(4,5),P2(,﹣);
(3)设直线AC解析式为y=m1x+n1,直线BC解析式为y=m2x+n2,
∵A(﹣1,0),C(0,﹣3),
∴,
解得:,
∴直线AC解析式为y=﹣3x﹣3,
∵B(3,0),C(0,﹣3),
∴,
解得:,
∴直线BC解析式为y=x﹣3,
设M(t,t﹣3),则N(t,t2﹣2t﹣3),
∴MN=|t2﹣2t﹣3﹣(t﹣3)|=|t2﹣3t|,
①当△QMN是以NQ为斜边的等腰直角三角形时,此时∠NMQ=90°,MN=MQ,如图2,
∵MQ∥x轴,
∴Q(﹣t,t﹣3),
∴|t2﹣3t|=|t﹣(﹣t)|,
∴t2﹣3t=±t,
解得:t=0(舍)或t=或t=,
∴M1(,﹣),Q1(﹣,﹣);M2(,),Q2(﹣,);
②当△QMN是以MQ为斜边的等腰直角三角形时,此时∠MNQ=90°,MN=NQ,如图3,
∵NQ∥x轴,
∴Q(,t2﹣2t﹣3),
∴NQ=|t﹣|=|t2+t|,
∴|t2﹣3t|=|t2+t|,
解得:t=0(舍)或t=5或t=2,
∴M3(5,2),Q3(﹣5,12);M4(2,﹣1),Q4(0,﹣3);
③当△QMN是以MN为斜边的等腰直角三角形时,
此时∠MQN=90°,MQ=NQ,如图4,
过点Q作QH⊥MN于H,则MH=HN,
∴H(t,),
∴Q(,),
∴QH=|t﹣|=|t2+5t|,
∵MQ=NQ,
∴MN=2QH,
∴|t2﹣3t|=2×|t2+5t|,
解得:t=7或1,
∴M5(7,4),Q5(﹣7,18);M6(1,﹣2),Q6(0,﹣3);
综上所述,点M及其对应点Q的坐标为:
M1(,),Q1(﹣,);M2(,﹣),Q2(﹣,﹣);M3(5,2),Q3(﹣5,12);M4(2,﹣1),Q4(0,﹣3);M5(7,4),Q5(﹣7,18);M6(1,﹣2),Q6(0,﹣3).
15.(2021•宜昌)在平面直角坐标系中,抛物线y1=﹣(x+4)(x﹣n)与x轴交于点A和点B(n,0)(n≥﹣4),顶点坐标记为(h1,k1).抛物线y2=﹣(x+2n)2﹣n2+2n+9的顶点坐标记为(h2,k2).
(1)写出A点坐标;
(2)求k1,k2的值(用含n的代数式表示)
(3)当﹣4≤n≤4时,探究k1与k2的大小关系;
(4)经过点M(2n+9,﹣5n2)和点N(2n,9﹣5n2)的直线与抛物线y1=﹣(x+4)(x﹣n),y2=﹣(x+2n)2﹣n2+2n+9的公共点恰好为3个不同点时,求n的值.
【解答】解:(1)∵y1=﹣(x+4)(x﹣n),
令y1=0,﹣(x+4)(x﹣n)=0,
∴x1=﹣4,x2=n,
∴A(﹣4,0);
(2)y1=﹣(x+4)(x﹣n)=﹣x2+(n﹣4)x+4n,
∴k1=n2+2n+4,
∵y2=﹣(x+2n)2﹣n2+2n+9,
∴k2=﹣n2+2n+9,
(3)k1﹣k2=n2﹣5,
①当n2﹣5>0时,可得n>2或n<﹣2,
即当﹣4≤n<﹣2或2<n≤4时,k1>k2;
②当n2﹣5<0时,可得﹣2<n<2,
即当﹣2<n<2时,k1<k2;
③当n2﹣5=0,可得n=2或n=﹣2,
即当n=2或n=﹣2时,k1=k2;
(4)设直线MN的解析式为:y=kx+b,
则,
由①﹣②得,k=﹣1,
∴b=﹣5n2+2n+9,
直线MN的解析式为:y=﹣x﹣5n2+2n+9.
①如图:
当直线MN经过抛物线y1,y2的交点时,
联立抛物线y1=﹣x2+(n﹣4)x+4n与y2=﹣x2﹣4nx﹣5n2+2n+9的解析式可得:
(5n﹣4)x=﹣5n2﹣2n+9①,
联立直线y=﹣x﹣5n2+2n+9与抛物线y2=﹣x2﹣4nx﹣5n2+2n+9的解析式可得:
x2+(4n﹣1)x=0,
则x1=0,x2=1﹣4n②,
当x1=0时,把x1=0代入y1得:y=4n,
把x1=0,y=4n代入直线的解析式得:
4n=﹣5n2+2n+9,
∴5n2+2n﹣9=0,
∴n=,
此时直线MN与抛物线y1,y2的公共点恰好为三个不同点,
当x2=1﹣4n时,把x2=1﹣4n代入①得:
(5n﹣4)(1﹣4n)=﹣5n2﹣2n+9,
该方程判别式Δ<0,
所以该方程没有实数根;
②如图:
当直线MN与抛物线y1或者与抛物线y2只有一个公共点时,
当直线MN与抛物线y1=﹣x2+(n﹣4)x+4n只有一个公共点时,
联立直线y=﹣x﹣5n2+2n+9与抛物线y=﹣x2+(n﹣4)x+4n可得,
﹣x2+(n﹣3)x+5n2+2n﹣9=0,
此时Δ=0,即(n﹣3)2+4(5n2+2n﹣9)=0,
∴21n2+2n﹣27=0,
∴n=,
由①而知直线MN与抛物线y2=﹣x2﹣4nx﹣5n2+2n+9公共点的横坐标为x1=0,x2=1﹣4n,
当n=时,1﹣4n≠0,
∴x1≠x2,
所以此时直线MN与抛物线y1,y2的公共点恰好为三个不同点,
③如图:
当直线MN与抛物线y2=﹣x2﹣4nx﹣5n2+2n+9只有一个公共点,
∵x1=0,x2=1﹣4n,
∴n=,
联立直线y=﹣x﹣5n2+2n+9与抛物线y1=﹣x2+(n﹣4)x+4n,
﹣x2+(n﹣3)x+5n2+2n﹣9=0,
△=(n﹣3)2+4(5n2+2n﹣9)=21n2+2n﹣27,
当n=时,Δ<0,
此时直线MN与抛物线y1,y2的公共点只有一个,
∴n≠,
综上所述:n1=,n2=,n3=,n4=.
16.(2021•恩施州)如图,在平面直角坐标系中,四边形ABCD为正方形,点A,B在x轴上,抛物线y=x2+bx+c经过点B,D(﹣4,5)两点,且与直线DC交于另一点E.
(1)求抛物线的解析式;
(2)F为抛物线对称轴上一点,Q为平面直角坐标系中的一点,是否存在以点Q,F,E,B为顶点的四边形是以BE为边的菱形.若存在,请求出点F的坐标;若不存在,请说明理由;
(3)P为y轴上一点,过点P作抛物线对称轴的垂线,垂足为M,连接ME,BP,探究EM+MP+PB是否存在最小值.若存在,请求出这个最小值及点M的坐标;若不存在,请说明理由.
【解答】解:(1)由点D的纵坐标知,正方形ABCD的边长为5,
则OB=AB﹣AO=5﹣4=1,故点B的坐标为(1,0),
则,解得,
故抛物线的表达式为y=x2+2x﹣3;
(2)存在,理由:
∵点D、E关于抛物线对称轴对称,故点E的坐标为(2,5),
由抛物线的表达式知,其对称轴为直线x=﹣1,故设点F的坐标为(﹣1,m),
由点B、E的坐标得,BE2=(2﹣1)2+(5﹣0)2=26,
设点Q的坐标为(s,t),
∵以点Q,F,E,B为顶点的四边形是以BE为边的菱形,
故点B向右平移1个单位向上平移5个单位得到点E,则Q(F)向右平移1个单位向上平移5个单位得到点F(Q),且BE=EF(BE=EQ),
则或,
解得或,
故点F的坐标为(﹣1,5+)或(﹣1,5﹣)或(﹣1,)或(﹣1,﹣);
(3)存在,理由:
由题意抛物线的对称轴交x轴于点B′(﹣1,0),将点B′向左平移1个单位得到点B″(﹣2,0),
连接B″E,交函数的对称轴于点M,过点M作MP⊥y轴,则点P、M为所求点,此时EM+MP+PB为最小,
理由:∵B′B″=PM=1,且B′B″∥PM,故四边形B″B′PM为平行四边形,则B″M=B′P=BP,
则EM+MP+PB=EM+1+MB″=B″E+1为最小,
由点B″、E的坐标得,直线B″E的表达式为y=(x+2),
当x=﹣1时,y=(x+2)=,故点M的坐标为(﹣1,),
则EM+MP+PB的最小值B″E+1=1+=+1.
17.(2021•武汉)抛物线y=x2﹣1交x轴于A,B两点(A在B的左边).
(1)▱ACDE的顶点C在y轴的正半轴上,顶点E在y轴右侧的抛物线上;
①如图(1),若点C的坐标是(0,3),点E的横坐标是,直接写出点A,D的坐标.
②如图(2),若点D在抛物线上,且▱ACDE的面积是12,求点E的坐标.
(2)如图(3),F是原点O关于抛物线顶点的对称点,不平行y轴的直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线只有一个公共点,求证:FG+FH的值是定值.
【解答】解:(1)对于y=x2﹣1,令y=x2﹣1=0,解得x=±1,令x=0,则y=﹣1,
故点A、B的坐标分别为(﹣1,0)、(1,0),顶点坐标为(0,﹣1),
①当x=时,y=x2﹣1=,
由点A、C的坐标知,点A向右平移1个单位向上平移3个单位得到点C,
∵四边形ACDE为平行四边形,
故点E向右平移1个单位向上平移3个单位得到点D,
则+1=,+3=,
故点D的坐标为(,);
②设点C(0,n),点E的坐标为(m,m2﹣1),
同理可得,点D的坐标为(m+1,m2﹣1+n),
将点D的坐标代入抛物线表达式得:m2﹣1+n=(m+1)2﹣1,
解得n=2m+1,
故点C的坐标为(0,2m+1);
连接CE,过点E作y轴的平行线交x轴于点M,交过点C与x轴的平行线与点N,
则S△ACE=S梯形CNMA﹣S△AEM﹣S△CEN=(m+1+m)(2m+1)﹣×(m+1)(m2﹣1)﹣m[2m+1﹣(m2﹣1)]=S▱ACDE=6,
解得m=﹣5(舍去)或2,
故点E的坐标为(2,3);
(2)∵F是原点O关于抛物线顶点的对称点,故点F的坐标为(0,﹣2),
由点B、F的坐标得,直线BF的表达式为y=2x﹣2①,
同理可得,直线AF的表达式为y=﹣2x﹣2②,
设直线l的表达式为y=tx+n,
联立y=tx+n和y=x2﹣1并整理得:x2﹣tx﹣n﹣1=0,
∵直线l与抛物线只有一个公共点,
故△=(﹣t)2﹣4(﹣n﹣1)=0,解得n=﹣t2﹣1,
故直线l的表达式为y=tx﹣t2﹣1③,
联立①③并解得xH=,
同理可得,xG=,
∵射线FA、FB关于y轴对称,则∠AFO=∠BFO,设∠AFO=∠BFO=α,
则sin∠AFO=sin∠BFO====sinα,
则FG+FH=+=(xH﹣xG)=(﹣)=为常数.
18.(2021•湖北)已知抛物线y=ax2+bx﹣3与x轴相交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点N(n,0)是x轴上的动点.
(1)求抛物线的解析式;
(2)如图1,若n<3,过点N作x轴的垂线交抛物线于点P,交直线BC于点G.过点P作PD⊥BC于点D,当n为何值时,△PDG≌△BNG;
(3)如图2,将直线BC绕点B顺时针旋转,它恰好经过线段OC的中点,然后将它向上平移个单位长度,得到直线OB1.
①tan∠BOB1= ;
②当点N关于直线OB1的对称点N1落在抛物线上时,求点N的坐标.
【解答】解:(1)设抛物线的表达式为y=a(x﹣x1)(x﹣x2),
则y=a(x﹣3)(x+1)=ax2﹣2ax﹣3a,
故﹣3a=﹣3,解得a=1,
故抛物线的表达式为y=x2﹣2x﹣3①;
(2)①当点N在y轴右侧时,
由抛物线的表达式知,点C(0,﹣3),
故OB=OC=3,则∠OBC=∠OCB=45°,
则NB=3﹣n=NG,则BG=(3﹣n),
∵△PDG≌△BNG,
故PG=BG=(3﹣n),
则PN=3﹣n+(3﹣n)=(3﹣n)(1+),
故点P的坐标为(n,﹣(3﹣n)(1+)),
将点P的坐标代入抛物线表达式得:(n﹣3)(+1)=n2﹣2n﹣3,
解得n=3(舍去)或,
故n=;
②当点N在y轴左侧时,
同理可得:n=﹣,
综上,n=;
(3)①设OC的中点为R(0,﹣),
由B、R的坐标得,直线BR的表达式为y=x﹣,
则将它向上平移个单位长度,得到直线OB1,
此时函数的表达式为y=x,
设B(m,m)
故tan∠BOB1==,
故答案为;
②设线段NN1交OB1于点H,则OB1是NN1的中垂线,
∵tan∠BOB1=,则tan∠N1NB=2,
∵NN1⊥OB1,
∴tan∠HON==,
∵ON=n,
∴HN=n,OH=n,
作HT⊥ON于点T,则HT==n,
∴OT=n,
∴H(n,n),
∵点H是NN1的中点,
由中点坐标公式得:点N1的坐标为(,),
将点N1的坐标代入抛物线表达式得:=()2﹣2×﹣3,
解得n=,
故点N的坐标为(,0)或(,0).
19.(2020•荆门)如图,抛物线L:y=x2﹣x﹣3与x轴正半轴交于点A,与y轴交于点B.
(1)求直线AB的解析式及抛物线顶点坐标;
(2)如图1,点P为第四象限且在对称轴右侧抛物线上一动点,过点P作PC⊥x轴,垂足为C,PC交AB于点D,求PD+BD的最大值,并求出此时点P的坐标;
(3)如图2,将抛物线L:y=x2﹣x﹣3向右平移得到抛物线L',直线AB与抛物线L'交于M,N两点,若点A是线段MN的中点,求抛物线L'的解析式.
【解答】解:(1)∵抛物线L:y=x2﹣x﹣3与x轴正半轴交于点A,与y轴交于点B,
∴点A(4,0),点B(0,﹣3),
设直线AB解析式为:y=kx﹣3,
∴0=4k﹣3,
∴k=,
∴直线AB解析式为:y=x﹣3,
∵y=x2﹣x﹣3=(x﹣)2﹣,
∴抛物线顶点坐标为(,﹣);
(2)∵点A(4,0),点B(0,﹣3),
∴OA=4,OB=3,
∴AB===5,
设点P(x,x2﹣x﹣3)(<x<4),则点D(x,x﹣3),
∴BD==x,
PD=(x﹣3)﹣(x2﹣x﹣3)=﹣x2+2x,
∴PD+BD=﹣x2+2x+x=﹣(x﹣)2+,
∵<x<4,﹣<0,
∴当x=时,PD+BD有最大值为,
此时,点P(,﹣);
(3)设平移后的抛物线L'解析式为y=(x﹣m)2﹣,
联立方程组可得:,
∴x2﹣2(m+)x+m2﹣=0,
设点M(x1,y1),点N(x2,y2),
∵直线AB与抛物线L'交于M,N两点,
∴x1,x2是方程x2﹣2(m+)x+m2﹣=0的两根,
∴x1+x2=2(m+),
∵点A是MN的中点,
∴x1+x2=8,
∴2(m+)=8,
∴m=,
∴平移后的抛物线L'解析式为y=(x﹣)2﹣=x2﹣x+.
20.(2020•孝感)在平面直角坐标系中,已知抛物线y=ax2+4ax+4a﹣6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.
(1)当a=6时,直接写出点A,B,C,D的坐标:
A (﹣3,0) ,B (﹣1,0) ,C (0,18) ,D (﹣2,﹣6) ;
(2)如图1,直线DC交x轴于点E,若tan∠AED=,求a的值和CE的长;
(3)如图2,在(2)的条件下,若点N为OC的中点,动点P在第三象限的抛物线上,过点P作x轴的垂线,垂足为Q,交AN于点F;过点F作FH⊥DE,垂足为H.设点P的横坐标为t,记f=FP+FH.
①用含t的代数式表示f;
②设﹣5<t≤m(m<0),求f的最大值.
【解答】解:(1)当a=6时,抛物线的表达式为:y=6x2+24x+18,
令y=0,则x=﹣1或﹣3;当x=0时,y=18,函数的对称轴为x=﹣2,
故点A、B、C、D的坐标分别为(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);
故答案为:(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);
(2)y=ax2+4ax+4a﹣6,令x=0,则y=4a﹣6,则点C(0,4a﹣6),
函数的对称轴为x=﹣2,故点D的坐标为(﹣2,﹣6),
由点C、D的坐标得,直线CD的表达式为:y=2ax+4a﹣6,
令y=0,则x=﹣2,故点E(﹣2,0),则OE=﹣2,
tan∠AED===,解得:a=,
故点C、E的坐标分别为(0,﹣)、(,0),
则CE==;
(3)①如图,作PF与ED的延长线交于点J,
由(2)知,抛物线的表达式为:y=x2+x﹣,
故点A、C的坐标分别为(﹣5,0)、(0,﹣),则点N(0,﹣),
由点A、N的坐标得,直线AN的表达式为:y=﹣x﹣;
设点P(t,t2+t﹣),则点F(t,﹣t﹣);
则PF=﹣t2﹣3t+,
由点E(,0)、C的坐标得,直线CE的表达式为:y=x﹣,
则点J(t,t﹣),故FJ=﹣t+,
∵FH⊥DE,JF∥y轴,
故∠FHJ=∠EOC=90°,∠FJH=∠ECO,
∴△FJH∽△ECO,故,
则FH=,
f=PF+FH=﹣t2﹣3t++(﹣t+1)=﹣t2﹣4t+;
②f=﹣t2﹣4t+=﹣(t+3)2+(﹣5<t≤m且m<0);
∴当﹣5<m<﹣3时,fmax=﹣m2﹣4m+;
当﹣3≤m<0时,fmax=.
21.(2020•武汉)将抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.
(1)直接写出抛物线C1,C2的解析式;
(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;
(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=﹣x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.
【解答】解:(1)∵抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,
∴C1:y=(x﹣2)2﹣6,
∵将抛物线C1向左平移2个单位长度得到抛物线C2.
∴C2:y=(x﹣2+2)2﹣6,即y=x2﹣6;
(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D,如图1,
设A(a,(a﹣2)2﹣6),则BD=a﹣2,AC=|(a﹣2)2﹣6|,
∵∠BAO=∠ACO=90°,
∴∠BAD+∠OAC=∠OAC+∠AOC=90°,
∴∠BAD=∠AOC,
∵AB=OA,∠ADB=∠OCA,
∴△ABD≌△OAC(AAS),
∴BD=AC,
∴a﹣2=|(a﹣2)2﹣6|,
解得,a=4,或a=﹣1(舍),或a=0(舍),或a=5,
∴A(4,﹣2)或(5,3);
(3)把y=kx代入y=x2﹣6中得,x2﹣kx﹣6=0,
∴xE+xF=k,
∴M(),
把y=﹣x代入y=x2﹣6中得,x2+x﹣6=0,
∴,
∴N(,),
设MN的解析式为y=mx+n(m≠0),则
,解得,,
∴直线MN的解析式为:,
当x=0时,y=2,
∴直线MN:经过定点(0,2),
即直线MN经过一个定点.
22.(2020•襄阳)如图,直线y=﹣x+2交y轴于点A,交x轴于点C,抛物线y=﹣x2+bx+c经过点A,点C,且交x轴于另一点B.
(1)直接写出点A,点B,点C的坐标及抛物线的解析式;
(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标;
(3)将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,若线段O′A′与抛物线只有一个公共点,请结合函数图象,求m的取值范围.
【解答】解:(1)令x=0,得y=﹣x+2=2,
∴A(0,2),
令y=0,得y=﹣x+2=0,解得,x=4,
∴C(4,0),
把A、C两点代入y=﹣x2+bx+c得,
,解得,
∴抛物线的解析式为,
令y=0,得=0,
解得,x=4,或x=﹣2,
∴B(﹣2,0);
(2)过M点作MN⊥x轴,与AC交于点N,如图1,
设M(a,),则N(a,),
∴=,
∵,
∴S四边形ABCM=S△ACM+S△ABC=,
∴当a=2时,四边形ABCM面积最大,其最大值为8,
此时M的坐标为(2,2);
方法二:连接OM,如图2,
设M(a,),
S四边形ABCM=S△ABO+S△AOM+S△OCM
=
=,
∴当a=2时,四边形ABCM面积最大,其最大值为8,
此时M的坐标为(2,2);
(3)∵将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,如图3
∴PO′=PO=m,O′A′=OA=2,
∴O′(m,m),A′(m+2,m),
当A′(m+2,m)在抛物线上时,有,
解得,m=﹣3,
当点O′(m,m)在抛物线上时,有,
解得,m=﹣4或2,
∴当﹣3﹣≤m≤﹣4或﹣3+≤m≤2时,线段O′A′与抛物线只有一个公共点.
相关试卷
这是一份第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江),共42页。试卷主要包含了,连接AD,BC,BD,,与y轴交于点C,综合与探究,,与x轴交于另一点B,顶点为D等内容,欢迎下载使用。
这是一份第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西),共35页。试卷主要包含了在x轴上方的抛物线对称轴上运动,,与y轴交于点C,,对称轴为直线x=2,,顶点为B等内容,欢迎下载使用。
这是一份第22章+二次函数(解答题中档题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共28页。试卷主要包含了与x之间的关系式为y=﹣x+9,有如下表所示的关系,的三组对应值数据,,m与x的关系如图所示,与第x天的关系如下表等内容,欢迎下载使用。