所属成套资源:[中考真题】各版本各地区九年级数学上学期期末复习培优练习
第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江)
展开
这是一份第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江),共42页。试卷主要包含了,连接AD,BC,BD,,与y轴交于点C,综合与探究,,与x轴交于另一点B,顶点为D等内容,欢迎下载使用。
第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江)
一.二次函数综合题(共12小题)
1.(2022•绥化)如图,抛物线y=ax2+bx+c交y轴于点A(0,﹣4),并经过点C(6,0),过点A作AB⊥y轴交抛物线于点B,抛物线的对称轴为直线x=2,D点的坐标为(4,0),连接AD,BC,BD.点E从A点出发,以每秒个单位长度的速度沿着射线AD运动,设点E的运动时间为m秒,过点E作EF⊥AB于F,以EF为对角线作正方形EGFH.
(1)求抛物线的解析式;
(2)当点G随着E点运动到达BC上时,求此时m的值和点G的坐标;
(3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由.
2.(2022•大庆)已知二次函数y=x2+bx+m图象的对称轴为直线x=2,将二次函数y=x2+bx+m图象中y轴左侧部分沿x轴翻折,保留其他部分得到新的图象C.
(1)求b的值;
(2)①当m<0时,图C与x轴交于点M,N(M在N的左侧),与y轴交于点P.当△MNP为直角三角形时,求m的值;
②在①的条件下,当图象C中﹣4≤y<0时,结合图象求x的取值范围;
(3)已知两点A(﹣1,﹣1),B(5,﹣1),当线段AB与图象C恰有两个公共点时,直接写出m的取值范围.
3.(2022•哈尔滨)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+b经过点A(,),点B(,﹣),与y轴交于点C.
(1)求a,b的值;
(2)如图1,点D在该抛物线上,点D的横坐标为﹣2.过点D向y轴作垂线,垂足为点E.点P为y轴负半轴上的一个动点,连接DP,设点P的纵坐标为t,△DEP的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);
(3)如图2,在(2)的条件下,连接OA,点F在OA上,过点F向y轴作垂线,垂足为点H,连接DF交y轴于点G,点G为DF的中点,过点A作y轴的平行线与过点P所作的x轴的平行线相交于点N,连接CN,PB,延长PB交AN于点M,点R在PM上,连接RN,若3CP=5GE,∠PMN+∠PDE=2∠CNR,求直线RN的解析式.
4.(2022•齐齐哈尔)综合与探究
如图,某一次函数与二次函数y=x2+mx+n的图象交点为A(﹣1,0),B(4,5).
(1)求抛物线的解析式;
(2)点C为抛物线对称轴上一动点,当AC与BC的和最小时,点C的坐标为 ;
(3)点D为抛物线位于线段AB下方图象上一动点,过点D作DE⊥x轴,交线段AB于点E,求线段DE长度的最大值;
(4)在(2)条件下,点M为y轴上一点,点F为直线AB上一点,点N为平面直角坐标系内一点,若以点C,M,F,N为顶点的四边形是正方形,请直接写出点N的坐标.
5.(2022•黑龙江)如图,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.
(1)若抛物线过点M(﹣2,﹣2),求实数a的值;
(2)在(1)的条件下,解答下列问题;
①求出△BCE的面积;
②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.
6.(2021•绥化)如图,已知抛物线y=ax2+bx+5(a≠0)与x轴交于点A(﹣5,0),点B(1,0)(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点,连接BD.直线y=经过点A,且与y轴交于点E.
(1)求抛物线的解析式;
(2)点N是抛物线上的一点,当△BDN是以DN为腰的等腰三角形时,求点N的坐标;
(3)点F为线段AE上的一点,点G为线段OA上的一点,连接FG,并延长FG与线段BD交于点H(点H在第一象限),当∠EFG=3∠BAE且HG=2FG时,求出点F的坐标.
7.(2020•黑龙江)已知抛物线y=a(x﹣2)2+c经过点A(﹣2,0)和点C(0,),与x轴交于另一点B,顶点为D.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如图,点E,F分别在线段AB,BD上(点E不与点A,B重合),且∠DEF=∠DAB,DE=EF,直接写出线段BE的长.
8.(2020•绥化)如图1,抛物线y=﹣(x+2)2+6与抛物线y1=﹣x2+tx+t﹣2相交y轴于点C,抛物线y1与x轴交于A、B两点(点B在点A的右侧),直线y2=kx+3交x轴负半轴于点N,交y轴于点M,且OC=ON.
(1)求抛物线y1的解析式与k的值;
(2)抛物线y1的对称轴交x轴于点D,连接AC,在x轴上方的对称轴上找一点E,使以点A,D,E为顶点的三角形与△AOC相似,求出DE的长;
(3)如图2,过抛物线y1上的动点G作GH⊥x轴于点H,交直线y2=kx+3于点Q,若点Q'是点Q关于直线MG的对称点,是否存在点G(不与点C重合),使点Q'落在y轴上?若存在,请直接写出点G的横坐标,若不存在,请说明理由.
9.(2020•黑龙江)如图,已知二次函数y=﹣x2+bx+c的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)抛物线上是否存在点P,使∠PAB=∠ABC,若存在请直接写出点P的坐标.若不存在,请说明理由.
10.(2021•哈尔滨)在平面直角坐标系中,点O为坐标系的原点,抛物线y=ax2+bx经过A(10,0),B(,6)两点,直线y=2x﹣4与x轴交于点C,与y轴交于点D,点P为直线y=2x﹣4上的一个动点,连接PA.
(1)求抛物线的解析式;
(2)如图1,当点P在第一象限时,设点P的横坐标为t,△APC的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);
(3)如图2,在(2)的条件下,点E在y轴的正半轴上,且OE=OD,连接CE,当直线BP交x轴正半轴于点L,交y轴于点V时,过点P作PG∥CE交x轴于点G,过点G作y轴的平行线交线段VL于点F,连接CF,过点G作GQ∥CF交线段VL于点Q,∠CFG的平分线交x轴于点M,过点M作MH∥CF交FG于点H,过点H作HR⊥CF于点R,若FR+MH=GQ,求点P的坐标.
11.(2021•齐齐哈尔)综合与探究
如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.
(1)求抛物线的解析式;
(2)抛物线上C、D两点之间的距离是 ;
(3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;
(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.
12.(2020•大庆)如图,抛物线y=ax2+bx+12与x轴交于A,B两点(B在A的右侧),且经过点C(﹣1,7)和点D(5,7).
(1)求抛物线的函数表达式;
(2)连接AD,经过点B的直线l与线段AD交于点E,与抛物线交于另一点F.连接CA,CE,CD,△CED的面积与△CAD的面积之比为1:7,点P为直线l上方抛物线上的一个动点,设点P的横坐标为t.当t为何值时,△PFB的面积最大?并求出最大值;
(3)在抛物线y=ax2+bx+12上,当m≤x≤n时,y的取值范围是12≤y≤16,求m﹣n的取值范围.(直接写出结果即可)
第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江)
参考答案与试题解析
一.二次函数综合题(共12小题)
1.(2022•绥化)如图,抛物线y=ax2+bx+c交y轴于点A(0,﹣4),并经过点C(6,0),过点A作AB⊥y轴交抛物线于点B,抛物线的对称轴为直线x=2,D点的坐标为(4,0),连接AD,BC,BD.点E从A点出发,以每秒个单位长度的速度沿着射线AD运动,设点E的运动时间为m秒,过点E作EF⊥AB于F,以EF为对角线作正方形EGFH.
(1)求抛物线的解析式;
(2)当点G随着E点运动到达BC上时,求此时m的值和点G的坐标;
(3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由.
【解答】解:(1)∵抛物线的对称轴为直线x=2,C(6,0),
∴抛物线与x轴的另一个交点为(﹣2,0),
∴抛物线的解析式为:y=a(x+2)(x﹣6),
将点A(0,﹣4)解析式可得,﹣12a=﹣4,
∴a=.
∴抛物线的解析式为:y=(x+2)(x﹣6)=x2﹣x﹣4.
(2)∵AB⊥y轴,A(0,﹣4),
∴点B的坐标为(4,﹣4).
∵D(4,0),
∴AB=BD=4,且∠ABD=90°,
∴△ABD是等腰直角三角形,∠BAD=45°.
∵EF⊥AB,
∴∠AFE=90°,
∴△AEF是等腰直角三角形.
∵AE=m,
∴AF=EF=m,
∴E(m,﹣4+m),F(m,﹣4).
∵四边形EGFH是正方形,
∴△EHF是等腰直角三角形,
∴∠HEF=∠HFE=45°,
∴FH是∠AFE的角平分线,点H是AE的中点.
∴H(m,﹣4+m),G(m,﹣4+m).
∵B(4,﹣4),C(6,0),
∴直线BC的解析式为:y=2x﹣12.
当点G随着E点运动到达BC上时,有2×m﹣12=﹣4+m.
解得m=.
∴G(,﹣).
(3)存在,理由如下:
∵B(4,﹣4),C(6,0),G(m,﹣4+m).
∴BG2=(4﹣m)2+(m)2,
BC2=(4﹣6)2+(﹣4)2=20,
CG2=(6﹣m)2+(﹣4+m)2.
若以B,G,C和平面内的另一点为顶点的四边形是矩形,则△BGC是直角三角形,
∴分以下三种情况:
①当点B为直角顶点时,BG2+BC2=CG2,
∴(4﹣m)2+(m)2+20=(6﹣m)2+(﹣4+m)2,
解得m=,
∴G(,﹣);
②当点C为直角顶点时,BC2+CG2=BG2,
∴20+(6﹣m)2+(﹣4+m)2=(4﹣m)2+(m)2,
解得m=,
∴G(,﹣);
③当点G为直角顶点时,BG2+CG2=BC2,
∴(4﹣m)2+(m)2+(6﹣m)2+(﹣4+m)2=20,
解得m=或2,
∴G(3,﹣3)或(,﹣);
综上,存在以B,G,C和平面内的另一点为顶点的四边形是矩形,点G的坐标为(,﹣)或(,﹣)或(3,﹣3)或(,﹣).
2.(2022•大庆)已知二次函数y=x2+bx+m图象的对称轴为直线x=2,将二次函数y=x2+bx+m图象中y轴左侧部分沿x轴翻折,保留其他部分得到新的图象C.
(1)求b的值;
(2)①当m<0时,图C与x轴交于点M,N(M在N的左侧),与y轴交于点P.当△MNP为直角三角形时,求m的值;
②在①的条件下,当图象C中﹣4≤y<0时,结合图象求x的取值范围;
(3)已知两点A(﹣1,﹣1),B(5,﹣1),当线段AB与图象C恰有两个公共点时,直接写出m的取值范围.
【解答】解:(1)∵已知二次函数y=x2+bx+m图象的对称轴为直线x=2,
∴b=﹣4;
(2)如图1:①令x2+bx+m=0,
解得x=2﹣或x=2+,
∵M在N的左侧,
∴M(2﹣,0),N(2+,0),
∴MN=2,MN的中点坐标为(2,0),
∵△MNP为直角三角形,
∴=,
解得m=0(舍)或m=﹣1;
②∵m=﹣1,
∴y=x2﹣4x﹣1(x≥0),
令x2﹣4x﹣1=﹣4,
解得x=1或x=3,
∴抛物线y=x2﹣4x﹣1(x≥0)与直线y=﹣4的交点为(1,﹣4),(3,﹣4),
∵y=x2﹣4x﹣1关于x轴对称的抛物线解析式为y=﹣x2+4x+1(x<0),
当﹣x2+4x+1=﹣4时,解得x=5(舍)或x=﹣1,
∴抛物线y=﹣x2+4x+1(x<0)与直线y=﹣4的交点为(﹣1,﹣4),
∴﹣1≤x<2﹣或0≤x≤1或3≤x<2+时,﹣4≤y<0;
(3)y=x2﹣4x+m关于x轴对称的抛物线解析式为y=﹣x2+4x﹣m(x<0),
如图2,当y=﹣x2+4x﹣m(x<0)经过点A时,﹣1﹣4﹣m=﹣1,
解得m=﹣4,
∴y=x2﹣4x﹣4(x≥0),当x=5时,y=1,
∴y=x2﹣4x﹣4(x≥0)与线段AB有一个交点,
∴m=﹣4时,当线段AB与图象C恰有两个公共点;
如图3,当y=x2﹣4x+m(x≥0)经过点(0,﹣1)时,m=﹣1,
此时图象C与线段AB有三个公共点,
∴﹣4≤m<﹣1时,线段AB与图象C恰有两个公共点;
如图4,当y=﹣x2+4x﹣m(x<0)经过点(0,﹣1)时,m=1,
此时图象C与线段AB有三个公共点,
当y=x2﹣4x+m(x≥0)的顶点在线段AB上时,m﹣4=﹣1,
解得m=3,
此时图象C与线段AB有一个公共点,
∴1<m<3时,线段AB与图象C恰有两个公共点;
综上所述:﹣4≤m<﹣1或1<m<3时,线段AB与图象C恰有两个公共点.
3.(2022•哈尔滨)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+b经过点A(,),点B(,﹣),与y轴交于点C.
(1)求a,b的值;
(2)如图1,点D在该抛物线上,点D的横坐标为﹣2.过点D向y轴作垂线,垂足为点E.点P为y轴负半轴上的一个动点,连接DP,设点P的纵坐标为t,△DEP的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);
(3)如图2,在(2)的条件下,连接OA,点F在OA上,过点F向y轴作垂线,垂足为点H,连接DF交y轴于点G,点G为DF的中点,过点A作y轴的平行线与过点P所作的x轴的平行线相交于点N,连接CN,PB,延长PB交AN于点M,点R在PM上,连接RN,若3CP=5GE,∠PMN+∠PDE=2∠CNR,求直线RN的解析式.
【解答】解:(1)∵抛物线y=ax2+b经过点A(,),点B(,﹣),
∴,
解得:,
故a=,b=;
(2)如图1,由(1)得:a=,b=,
∴抛物线的解析式为y=x2﹣,
∵点D在该抛物线上,点D的横坐标为﹣2,
∴y=×(﹣2)2﹣=,
∴D(﹣2,),
∵DE⊥y轴,
∴DE=2,
∴E(0,),
∵点P为y轴负半轴上的一个动点,且点P的纵坐标为t,
∴P(0,t),
∴PE=﹣t,
∴S=PE•DE=×(﹣t)×2=﹣t+,
故S关于t的函数解析式为S=﹣t+;
(3)如图2,过点C作CK⊥CN,交NR的延长线于点K,过点K作KT⊥y轴于点T,
由(2)知:抛物线的解析式为y=x2﹣,
当x=0时,y=﹣,
∴C(0,﹣),
∴OC=,
∵FH⊥y轴,DE⊥y轴,
∴∠FHG=∠DEG=90°,
∵点G为DF的中点,
∴DG=FG,
∵∠HGF=∠EGD,
∴△FGH≌△DGE(AAS),
∴FH=DE=2,HG=EG=HE,
设直线OA的解析式为y=kx,
∵A(,),
∴k=,
解得:k=,
∴直线OA的解析式为y=x,
当x=2时,y=×2=,
∴F(2,),
∴H(0,),
∴HE=﹣=,
∴GE=HE=×=,
∵3CP=5GE,
∴CP=GE=×=,
∴P(0,﹣1),
∵AN∥y轴,PN∥x轴,
∴N(,﹣1),
∴PN=,
∵E(0,),
∴EP=﹣(﹣1)=,
设直线BP的解析式为y=mx+n,则,
解得:,
∴直线BP的解析式为y=x﹣1,
当x=时,y=×﹣1=,
∴M(,),
∴MN=﹣(﹣1)=,
∵==,==,
∴=,
又∵∠PNM=∠DEP=90°,
∴△PMN∽△DPE,
∴∠PMN=∠DPE,
∵∠DPE+∠PDE=90°,
∴∠PMN+∠PDE=90°,
∵∠PMN+∠PDE=2∠CNR,
∴∠CNR=45°,
∵CK⊥CN,
∴∠NCK=90°,
∴△CNK是等腰直角三角形,
∴CK=CN,
∵∠CTK=∠NPC=90°,
∴∠KCT+∠CKT=90°,
∵∠NCP+∠KCT=90°,
∴∠CKT=∠NCP,
∴△CKT≌△NCP(AAS),
∴CT=PN=,KT=CP=,
∴OT=CT﹣OC=﹣=2,
∴K(,2),
设直线RN的解析式为y=ex+f,把K(,2),N(,﹣1)代入,
得:,
解得:,
∴直线RN的解析式为y=﹣x+.
4.(2022•齐齐哈尔)综合与探究
如图,某一次函数与二次函数y=x2+mx+n的图象交点为A(﹣1,0),B(4,5).
(1)求抛物线的解析式;
(2)点C为抛物线对称轴上一动点,当AC与BC的和最小时,点C的坐标为 (1,2) ;
(3)点D为抛物线位于线段AB下方图象上一动点,过点D作DE⊥x轴,交线段AB于点E,求线段DE长度的最大值;
(4)在(2)条件下,点M为y轴上一点,点F为直线AB上一点,点N为平面直角坐标系内一点,若以点C,M,F,N为顶点的四边形是正方形,请直接写出点N的坐标.
【解答】解:(1)将A(﹣1,0),B(4,5)代入y=x2+mx+n得,
,
∴,
∴抛物线的解析式为y=x2﹣2x﹣3;
(2)设直线AB的函数解析式为y=kx+b,
,
∴,
∴直线AB的解析式为y=x+1,
∵AC+BC≥AB,
∴当点A、B、C三点共线时,AC+BC的最小值为AB的长,
∵抛物线y=x2﹣2x﹣3的对称轴为x=1,
∴当x=1时,y=2,
∴C(1,2),
故答案为:(1,2);
(3)设D(a,a2﹣2a﹣3),则E(a,a+1),
∴DE=(a+1)﹣(a2﹣2a﹣3)=﹣a2+3a+4(﹣1<a<4),
∴当a=时,DE的最大值为;
(4)当CF为对角线时,如图,
此时四边形CMFN是正方形,
∴N(1,1),
当CF为边时,若点F在C的上方,
此时∠MFC=45°,
∴MF∥x轴,
∵△MCF是等腰直角三角形,
∴MF=CN=2,
∴N(1,4),
当点F在点C的下方时,如图,四边形CFNM是正方形,
同理可得N(﹣1,2),
当点F在点C的下方时,如图,四边形CFMN是正方形,
同理可得N(,),
综上:N(1,1)或(1,4)或(﹣1,2)或(,).
5.(2022•黑龙江)如图,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.
(1)若抛物线过点M(﹣2,﹣2),求实数a的值;
(2)在(1)的条件下,解答下列问题;
①求出△BCE的面积;
②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.
【解答】解:(1)将M(﹣2,﹣2)代入抛物线解析式得:﹣2=(﹣2﹣2)(﹣2+a),
解得:a=4;
(2)①由(1)抛物线解析式y=(x﹣2)(x+4),
当y=0时,得:0=(x﹣2)(x+4),
解得:x1=2,x2=﹣4,
∵点B在点C的左侧,
∴B(﹣4,0),C(2,0),
当x=0时,得:y=﹣2,即E(0,﹣2),
∴S△BCE=×6×2=6;
②由抛物线解析式y=(x﹣2)(x+4),得对称轴为直线x=﹣1,
根据C与B关于抛物线对称轴直线x=﹣1对称,连接BE,与对称轴交于点H,即为所求,
设直线BE解析式为y=kx+b,
将B(﹣4,0)与E(0,﹣2)代入得:,
解得:,
∴直线BE解析式为y=﹣x﹣2,
将x=﹣1代入得:y=﹣2=﹣,
则H(﹣1,﹣).
6.(2021•绥化)如图,已知抛物线y=ax2+bx+5(a≠0)与x轴交于点A(﹣5,0),点B(1,0)(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点,连接BD.直线y=经过点A,且与y轴交于点E.
(1)求抛物线的解析式;
(2)点N是抛物线上的一点,当△BDN是以DN为腰的等腰三角形时,求点N的坐标;
(3)点F为线段AE上的一点,点G为线段OA上的一点,连接FG,并延长FG与线段BD交于点H(点H在第一象限),当∠EFG=3∠BAE且HG=2FG时,求出点F的坐标.
【解答】解:(1)将A(﹣5,0),B(1,0)代入抛物线y=ax2+bx+5(a≠0)得:
,
解得:,
∴抛物线的解析式为:y=﹣x2﹣4x+5;
(2)∵D(﹣2,9),B(1,0),点N是抛物线上的一点且△BDN是以DN为腰的等腰三角形,
∴此题有两种情形:
①当DN=DB时,根据抛物线的对称性得:A与N重合,
∴N1(﹣5,0),
②方法一:当DN=BN时(如图1),N在BD的垂直平分线上,
BD的垂直平分线交BD于I,交x轴于点Q,BD与y轴交点为K,
∵∠KBO+∠OKB=90°,∠KBO+∠IQB=90°,
∴∠OKB=∠IQB,
在Rt△OKB中,sin∠OKB=,
∴sin∠IQB==,
∵I是BD的中点,BD=3,
∴BI=,
∴BQ=15,
∴Q(﹣14,0),I(,)
设yQI=kx+b,代入得:
,
解得:,
∴yQI=,
联立得:,
解得:x=,
∴yQI=,
N2(,),N3(,),
方法二:如图2,
过点N作DS⊥NT交NT于点S,
设N(a,﹣a2﹣4a+5),D(﹣2,9),
∵DN=BN,
∴DS2+SN2=NT2+TB2,
∴(﹣2﹣a)2+(9+a2+4a﹣5)2=(﹣a2﹣4a+5)2+(1﹣a)2,
(2+a)2﹣(1﹣a)2=(a2+4a﹣5)2﹣(9+a2+4a﹣5)2,
(2+a+1﹣a)(2+a﹣1+a)=(a2+4a﹣5+a2+4a+4)(a2+4a﹣5﹣a2﹣4a﹣4),
解得:a=,
把a=代入﹣a2﹣4a+5=﹣()2﹣4()+5=,
∴N2(,),N3(,),
综上所述,N1(﹣5,0),N2(,),N3(,);
(3)如图1,在AE上取一点F,作AF的垂直平分线交x轴于点M,连接MF,则AM=MF,在AO上M点的右侧作FG=MF,
∴∠FGM=∠FMG,
∴∠EFG=∠BAE+∠FGM=∠BAE+∠FMG=∠BAE+2∠BAE=3∠BAE,
移动F点,当HG=2FG时,点F为所求.
过点F作FP垂直于x轴于点P,过点H作HR垂直于x轴于点R,
∴△FPG∽△HRG,
∴===,GR=2PG,HR=2PF,
设F(m,﹣﹣),
则OP=﹣m,PF=m+,
HR=2PF=m+5,
∵AP=m+5,
∴AP=2PF,
∵AM=AP﹣MP=2PF﹣MP,MF=AM,
∴在Rt△PMF中,PM2+PF2=MF2,PM2+PF2=(2PF﹣MP)2,
∴PM=PF=×=m+,
∴GP=m+,
∴GR=2PG=m+,
∴PR=3PG=3PM,
∴AR=AP+PR=AP+3PM=2PF+3×PF==,
∴OR=,
∴H(,m+5),
∵B(1,0),D(﹣2,9),
∴BD解析式为:yBD=﹣3x+3,
把H代入上式并解得:m=﹣,
再把m=﹣代入y=﹣x﹣得:y=﹣,
∴F(﹣,﹣).
7.(2020•黑龙江)已知抛物线y=a(x﹣2)2+c经过点A(﹣2,0)和点C(0,),与x轴交于另一点B,顶点为D.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如图,点E,F分别在线段AB,BD上(点E不与点A,B重合),且∠DEF=∠DAB,DE=EF,直接写出线段BE的长.
【解答】解:(1)将点A(﹣2,0),C(0,)代入 y=a(x﹣2)2 +c,
得:,
解得:,
∴抛物线的解析式为y=﹣(x﹣2)2+3,即y=﹣x2+x+;
∴顶点D的坐标为(2,3);
(2)当y=0时,﹣(x﹣2)2+3=0,
解得:x1=﹣2,x2=6,
∴A(﹣2,0),B(6,0),
∵∠DEB=∠DEF+∠BEF=∠DAB+∠ADE,∠DEF=∠DAB,
∴∠ADE=∠BEF,
∵AD==5,BD==5,
∴AD=BD,
∴∠DAE=∠EBF,
∵DE=EF,
∴△ADE≌△BEF(AAS),
∴BE=AD=5.
8.(2020•绥化)如图1,抛物线y=﹣(x+2)2+6与抛物线y1=﹣x2+tx+t﹣2相交y轴于点C,抛物线y1与x轴交于A、B两点(点B在点A的右侧),直线y2=kx+3交x轴负半轴于点N,交y轴于点M,且OC=ON.
(1)求抛物线y1的解析式与k的值;
(2)抛物线y1的对称轴交x轴于点D,连接AC,在x轴上方的对称轴上找一点E,使以点A,D,E为顶点的三角形与△AOC相似,求出DE的长;
(3)如图2,过抛物线y1上的动点G作GH⊥x轴于点H,交直线y2=kx+3于点Q,若点Q'是点Q关于直线MG的对称点,是否存在点G(不与点C重合),使点Q'落在y轴上?若存在,请直接写出点G的横坐标,若不存在,请说明理由.
【解答】解:(1)当x=0时,得y=﹣(x+2)2+6=﹣2+6=4,
∴C(0,4),
把C(0,4)代入y1=﹣x2+tx+t﹣2得,t﹣2=4,
∴t=6,
∴y1=﹣x2+3x+4,
∵ON=OC,
∴N(﹣4,0),
把N(﹣4,0)代入y2=kx+3中,得﹣4k+3=0,
解得,k=;
∴抛物线y1的解析式为y1=﹣x2+3x+4,k的值为.
(2)连接AE,如图1,
令y1=0,得y1=﹣x2+3x+4=0,
解得,x=﹣1或4,
∴A(﹣1,0),B(4,0),
∴对称轴为:x=,
∴D(,0),
∴OA=1,OC=4,OD=,AD=,
①当△AOC∽△EDA时,
,即,
∴DE=,
②当△AOC∽△ADE时,
,即,
∴DE=10,
综上,DE=或10;
(3)点G的横坐标为或或或.
如图,点Q'是点Q关于直线MG的对称点,且点Q'在y轴上时,由轴对称性质可知,QM=Q'M,QG=Q'G,∠Q'MG=∠QMG,
∵QG⊥x轴,
∴QG∥y轴,
∴∠Q'MG=∠QGM,
∴∠QMG=∠QGM,
∴QM=QG,
∴QM=Q'M=QG=Q'G,
∴四边形QMQ'G为菱形,
∴GQ'∥QM,
作GP⊥y轴于点P,设G(a,﹣a2+3a+4),则Q(a,a+3),
∴PG=|a|,Q'G=GQ=|(a+3)﹣(﹣a2+3a+4)|=|a2﹣a﹣1|,
∵GQ'∥QN,
∴∠GQ'P=∠NMO,
在Rt△NMO中,MN==5,
∴sin∠GQ'P=sin∠NMO=,
∴.
解得a1=,a2=,a3=,a4=.
经检验,a1=,a2=,a3=,a4=都是所列方程的解.
综合以上可得,点G的横坐标为或或或.
9.(2020•黑龙江)如图,已知二次函数y=﹣x2+bx+c的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)抛物线上是否存在点P,使∠PAB=∠ABC,若存在请直接写出点P的坐标.若不存在,请说明理由.
【解答】解:(1)根据题意得,
解得.
故抛物线的解析式为y=﹣x2+2x+3;
(2)二次函数y=﹣x2+2x+3的对称轴是直线x=(﹣1+3)÷2=1,
当x=0时,y=3,
则C(0,3),
点C关于对称轴的对应点P1(2,3),
设直线BC的解析式为y=kx+3,
则3k+3=0,
解得k=﹣1.
则直线BC的解析式为y=﹣x+3,
设与BC平行的直线AP2的解析式为y=﹣x+m,
则1+m=0,
解得m=﹣1.
则与BC平行的直线AP2的解析式为y=﹣x﹣1,
联立抛物线解析式得,
解得,(舍去).
P2(4,﹣5).
综上所述,P1(2,3),P2(4,﹣5).
10.(2021•哈尔滨)在平面直角坐标系中,点O为坐标系的原点,抛物线y=ax2+bx经过A(10,0),B(,6)两点,直线y=2x﹣4与x轴交于点C,与y轴交于点D,点P为直线y=2x﹣4上的一个动点,连接PA.
(1)求抛物线的解析式;
(2)如图1,当点P在第一象限时,设点P的横坐标为t,△APC的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);
(3)如图2,在(2)的条件下,点E在y轴的正半轴上,且OE=OD,连接CE,当直线BP交x轴正半轴于点L,交y轴于点V时,过点P作PG∥CE交x轴于点G,过点G作y轴的平行线交线段VL于点F,连接CF,过点G作GQ∥CF交线段VL于点Q,∠CFG的平分线交x轴于点M,过点M作MH∥CF交FG于点H,过点H作HR⊥CF于点R,若FR+MH=GQ,求点P的坐标.
【解答】解:(1)把A(10,0),B(,6)代入y=ax2+bx,得到,
解得,
∴抛物线的解析式为y=﹣x2+x.
(2)∵直线y=2x﹣4与x轴交于点C,与y轴交于点D,
∴C(2,0),D(0,﹣4),
∵A(10,0),
∴OA=10,OC=2,
∴AC=8,
由题意P(t,2t﹣4),
∴S=•PT•AC=×8×(2t﹣4)=8t﹣16.
(3)如图2中,过点P作PT⊥CG于T,交CF于W,过点F作FJ⊥MH交MH的延长线于J,连接JQ.
∵PT⊥CG,
∴∠PTC=∠ODC=90°,
∴OD∥PT,
∴∠ODC=∠CPT,
∴tan∠CPT=tan∠ODC===,
∵HR⊥RF,FJ⊥MJ,MH∥CF,
∴RH⊥MJ,
∴∠FRH=∠RHJ=∠FJH=90°,
∴四边形RFJH是矩形,
∴RF=HJ,
∵RF+HM=MH+HJ=MJ=GQ,MJ∥GQ,
∴四边形MJQG是平行四边形,
∴JQ=GM,∠JQG=∠GMJ,
∵MF平分∠CFG,
∴∠CFM=∠MFG,
∵CF∥MH,
∴∠FMH=∠CFM,
∴∠FMH=∠MFH,
∴FH=HM,
∵∠MGH=∠FJH=90°,∠MHG=∠FHJ,
∴△MHG≌△FHJ(AAS),
∴MG=FJ=JQ,∠GMH=∠HFJ,
∴∠JFQ=∠JQF,∠GFJ=∠GQJ,
∴∠GFQ=∠GQF,
∵CF∥GQ,PT∥FG,
∴∠WPF=∠GFQ,∠WFP=∠GQF,
∴∠WPF=∠WFP,
∴WP=WF,
∵D,E关于x轴对称,
∴∠ECO=∠DCO=∠PCG,
∵EC∥PG,
∴∠PGC=∠ECO,
∴∠PCG=∠PGC,
∴PC=PG,
∵PT⊥CG,
∴CT=TG,
∵WT∥FG,
∴CW=WF,
∴WP=WC=WF,
∴∠CPF=90°,
∴∠LCP+∠PLC=90°,
∵∠ODC+∠OCD=90°,∠OCD=∠LCP,
∴∠PLC=∠ODC,
∴tan∠PLC=tan∠ODC=,
∵B(,6),
∴OL=+12=,
∴L(,0),
∴直线PB的解析式为y=﹣x+,
由,解得,
∴P(,5).
11.(2021•齐齐哈尔)综合与探究
如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.
(1)求抛物线的解析式;
(2)抛物线上C、D两点之间的距离是 2 ;
(3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;
(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.
【解答】解:(1)∵OA=1,
∴A(﹣1,0),
又∵对称轴为x=2,
∴B(5,0),
将A,B代入解析式得:
,
解得,
∴,自变量x为全体实数;
(2)由(1)得:C(0,),D(2,),
∴CD=,
故答案为2;
(3)∵B(5,0),C(0,),
∴直线BC的解析式为:,
设E(x,),且0<x<5,
作EF∥y轴交BC于点F,
则F(x,),
∴EF=﹣()=,
∴,
当x=时,S△BCE有最大值为;
(4)设P(2,y),Q(m,n),
由(1)知B(5,0),C(0,),
若BC为矩形的对角线,
由中点坐标公式得:,
解得:,
又∵∠BPC=90°,
∴PC2+PB2=BC2,
即:,
解得y=4或y=﹣,
∴n=或n=4,
∴Q(3,)或Q(3,4),
若BP为矩形的对角线,
由中点坐标公式得,
解得,
又∵∠BCP=90°,
BC2+CP2=BP2,
即:,
解得y=,
∴Q(7,4),
若BQ为矩形的对角线,
由中点坐标公式得,
解得:,
又∵∠BCQ=90°,
∴BC2+CQ2=BQ2,
即:,
解得n=,
∴Q(﹣3,﹣),
综上,点Q的坐标为(3,)或(3,4),或(7,4)或(﹣3,﹣).
12.(2020•大庆)如图,抛物线y=ax2+bx+12与x轴交于A,B两点(B在A的右侧),且经过点C(﹣1,7)和点D(5,7).
(1)求抛物线的函数表达式;
(2)连接AD,经过点B的直线l与线段AD交于点E,与抛物线交于另一点F.连接CA,CE,CD,△CED的面积与△CAD的面积之比为1:7,点P为直线l上方抛物线上的一个动点,设点P的横坐标为t.当t为何值时,△PFB的面积最大?并求出最大值;
(3)在抛物线y=ax2+bx+12上,当m≤x≤n时,y的取值范围是12≤y≤16,求m﹣n的取值范围.(直接写出结果即可)
【解答】解:(1)把C(﹣1,7),D(5,7)代入y=ax2+bx+12,
可得,
解得,
∴抛物线的解析式为y=﹣x2+4x+12.
(2)如图1中,过点E作EM⊥AB于M,过点D作DN⊥AB于N.
对于抛物线y=﹣x2+4x+12,令y=0,得到,x﹣4x﹣12=0,解得x=﹣2或6,
∴A(﹣2,0),B(6,0),
∵D(5,7),
∴OA=2,DN=7,ON=5,AN=7
∵△CED的面积与△CAD的面积之比为1:7,
∴DE:AD=1:7,
∴AE:AD=6:7,
∵EM∥DN,
∵===,
∴==,
∴AM=EM=6,
∴E(4,6),
∴直线BE的解析式为y=﹣3x+18,
由,解得或,
∴F(1,15),
过点P作PQ∥y轴交BF于Q,设P(t,﹣t2+4t+12)则Q(t,﹣3t+18),
∴PQ=﹣t2+4t+12﹣(﹣3t+18)=﹣t2+7t﹣6,
∵S△PBF=•(﹣t2+7t﹣6)•5=﹣(t﹣)2+,
∵﹣<0,
∴t=时,△BFP的面积最大,最大值为.
(3)对于抛物线y=﹣x2+4x+12,当y=16时,﹣x2+4x+12=16,
解得x1=x2=2,
当y=12时,﹣x2+4x+12=12,解得x=0或4,
观察图2可知:当0≤x≤4时,12≤y≤16,
∵m≤x≤n,
而m﹣n<0,
故﹣4≤m﹣n≤﹣2.
相关试卷
这是一份第22章二次函数(解答题压轴题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西),共25页。试卷主要包含了,与y轴交于点C,,与x轴的正半轴交于点C,,顶点为D,,则该抛物线的解析式可以表示为等内容,欢迎下载使用。
这是一份第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西),共35页。试卷主要包含了在x轴上方的抛物线对称轴上运动,,与y轴交于点C,,对称轴为直线x=2,,顶点为B等内容,欢迎下载使用。
这是一份第22章二次函数(解答题基础题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江),共23页。试卷主要包含了两点,与y轴交于点C,顶点为D,综合与探究等内容,欢迎下载使用。