|试卷下载
终身会员
搜索
    上传资料 赚现金
    第22章二次函数(解答题压轴题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西)
    立即下载
    加入资料篮
    第22章二次函数(解答题压轴题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西)01
    第22章二次函数(解答题压轴题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西)02
    第22章二次函数(解答题压轴题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西)03
    还剩22页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第22章二次函数(解答题压轴题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西)

    展开
    这是一份第22章二次函数(解答题压轴题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西),共25页。试卷主要包含了,与y轴交于点C,,与x轴的正半轴交于点C,,顶点为D,,则该抛物线的解析式可以表示为等内容,欢迎下载使用。

    第22章二次函数(解答题压轴题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西)
    一.二次函数综合题(共9小题)
    1.(2022•河池)在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y轴交于点C(0,3).
    (1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;
    (2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF⊥x轴于点F,设EF=m,问:当m为何值时,△BFE与△DEC的面积之和最小;
    (3)若将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

    2.(2022•贺州)如图,抛物线y=﹣x2+bx+c过点A(﹣1,0),B(3,0),与y轴交于点C.
    (1)求抛物线的解析式;
    (2)点P为抛物线对称轴上一动点,当△PCB是以BC为底边的等腰三角形时,求点P的坐标;
    (3)在(2)条件下,是否存在点M为抛物线第一象限上的点,使得S△BCM=S△BCP?若存在,求出点M的横坐标;若不存在,请说明理由.

    3.(2022•广西)已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧).
    (1)求点A,点B的坐标;
    (2)如图,过点A的直线l:y=﹣x﹣1与抛物线的另一个交点为C,点P为抛物线对称轴上的一点,连接PA,PC,设点P的纵坐标为m,当PA=PC时,求m的值;
    (3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,若抛物线y=a(﹣x2+2x+3)(a≠0)与线段MN只有一个交点,请直接写出a的取值范围.

    4.(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.
    (1)求抛物线的解析式;
    (2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;
    (3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.


    5.(2021•梧州)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣1,0),B(0,3),顶点为C.平移此抛物线,得到一条新的抛物线,且新抛物线上的点D(3,﹣1)为原抛物线上点A的对应点,新抛物线顶点为E,它与y轴交于点G,连接CG,EG,CE.
    (1)求原抛物线对应的函数表达式;
    (2)在原抛物线或新抛物线上找一点F,使以点C,E,F,G为顶点的四边形是平行四边形,并求出点F的坐标;
    (3)若点K是y轴上的一个动点,且在点B的上方,过点K作CE的平行线,分别交两条抛物线于点M,N,且点M,N分别在y轴的两侧,当MN=CE时,请直接写出点K的坐标.

    6.(2021•桂林)如图,已知抛物线y=a(x﹣3)(x+6)过点A(﹣1,5)和点B(﹣5,m),与x轴的正半轴交于点C.
    (1)求a,m的值和点C的坐标;
    (2)若点P是x轴上的点,连接PB,PA,当=时,求点P的坐标;
    (3)在抛物线上是否存在点M,使A,B两点到直线MC的距离相等?若存在,求出满足条件的点M的横坐标;若不存在,请说明理由.

    7.(2021•玉林)已知抛物线:y=ax2﹣3ax﹣4a(a>0)与x轴交点为A,B(A在B的左侧),顶点为D.
    (1)求点A,B的坐标及抛物线的对称轴;
    (2)若直线y=﹣x与抛物线交于点M,N,且M,N关于原点对称,求抛物线的解析式;
    (3)如图,将(2)中的抛物线向上平移,使得新的抛物线的顶点D′在直线l:y=上,设直线l与y轴的交点为O′,原抛物线上的点P平移后的对应点为点Q,若O′P=O′Q,求点P,Q的坐标.

    8.(2020•河池)在平面直角坐标系xOy中,抛物线与x轴交于(p,0),(q,0),则该抛物线的解析式可以表示为:
    y=a(x﹣p)(x﹣q)=ax2﹣a(p+q)x+apq.
    (1)若a=1,抛物线与x轴交于(1,0),(5,0),直接写出该抛物线的解析式和顶点坐标;
    (2)若a=﹣1,如图(1),A(﹣1,0),B(3,0),点M(m,0)在线段AB上,抛物线C1与x轴交于A,M,顶点为C;抛物线C2与x轴交于B,M,顶点为D.当A,C,D三点在同一条直线上时,求m的值;
    (3)已知抛物线C3与x轴交于A(﹣1,0),B(3,0),线段EF的端点E(0,3),F(4,3).若抛物线C3与线段EF有公共点,结合图象,在图(2)中探究a的取值范围.

    9.(2020•玉林)如图,已知抛物线:y1=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C.
    (1)直接写出点A,B,C的坐标;
    (2)将抛物线y1经过向右与向下平移,使得到的抛物线y2与x轴交于B,B'两点(B'在B的右侧),顶点D的对应点为点D',若∠BD'B'=90°,求点B'的坐标及抛物线y2的解析式;
    (3)在(2)的条件下,若点Q在x轴上,则在抛物线y1或y2上是否存在点P,使以B′,C,Q,P为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P的坐标;如果不存在,请说明理由.


    第22章二次函数(解答题压轴题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西)
    参考答案与试题解析
    一.二次函数综合题(共9小题)
    1.(2022•河池)在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y轴交于点C(0,3).
    (1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;
    (2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF⊥x轴于点F,设EF=m,问:当m为何值时,△BFE与△DEC的面积之和最小;
    (3)若将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

    【解答】解:(1)∵y=ax2+2x+b经过B(3,0),C(0,3),
    ∴,
    ∴,
    ∴抛物线的解析式为y=﹣x2+2x+3,
    ∵y=﹣(x﹣1)2+4,
    ∴抛物线的顶点D(1,4);

    (2)如图1中,连接BC,过点C作CH⊥BD于点H.设抛物线的对称轴交x轴于点T.

    ∵C(0,3),B(3,0),D(1,4),
    ∴BC=3,CD=,BD==2,
    ∴BC2+CD2=BD2,
    ∴∠BCD=90°,
    ∵•CD•CB=•BD•CH,
    ∴CH==,
    ∵EF⊥x轴,DT⊥x轴,
    ∴EF∥DT,
    ∴==,
    ∴==,
    ∴BE=m,BF=m,
    ∴△BFE与△DEC的面积之和S=×(2﹣m)×+×m×m=(m﹣)2+,
    ∵>0,
    ∴S有最小值,最小值为,此时m=,
    ∴m=时,△BFE与△DEC的面积之和有最小值.
    解法二:求两个三角形面积和的最小值,即就是求四边形OCEF面积的最大值.求出四边形OCEF的面积的最大值即可.
    (3)存在.
    理由:如图2中,由题意抛物线L2的对称轴x=5,M(6,﹣3).

    设P(5,m),
    当BP=BM=3时,22+m2=(3)2,
    ∴m=±,
    ∴P1(5,),P2(5,﹣),
    当PB=PM时,22+m2=12+(m+3)2,
    解得,m=﹣1,
    ∴P3(5,﹣1),
    当BM=PM时,(3)2=12+(m+3)2,
    解得,m=﹣3±,
    ∴P4(5,﹣3+),P5(5,﹣3﹣),
    综上所述,满足条件的点P的坐标为P1(5,),P2(5,﹣),P3(5,﹣1),P4(5,﹣3+),P5(5,﹣3﹣).
    2.(2022•贺州)如图,抛物线y=﹣x2+bx+c过点A(﹣1,0),B(3,0),与y轴交于点C.
    (1)求抛物线的解析式;
    (2)点P为抛物线对称轴上一动点,当△PCB是以BC为底边的等腰三角形时,求点P的坐标;
    (3)在(2)条件下,是否存在点M为抛物线第一象限上的点,使得S△BCM=S△BCP?若存在,求出点M的横坐标;若不存在,请说明理由.

    【解答】解:(1)由题意得:y=﹣(x+1)•(x﹣3),
    ∴y=﹣x2+2x+3;
    (2)设P(1,m),
    ∵PB2=PC2,
    ∴(3﹣1)2+m2=1+(m﹣3)2,
    ∴m=1,
    ∴P(1,1);
    (3)如图,

    假设存在M点满足条件,
    作PQ∥BC交y轴于Q,作MN∥BC交y轴于N,
    ∵PQ的解析式为y=﹣x+2,
    ∴Q(0,2),
    ∵C(0,3),S△BCM=S△BCP,
    ∴N(0,4),
    ∴直线MN的解析式为:y=﹣x+4,
    由﹣x2+2x+3=﹣x+4得,
    x=,
    ∴M点横坐标为或.
    3.(2022•广西)已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧).
    (1)求点A,点B的坐标;
    (2)如图,过点A的直线l:y=﹣x﹣1与抛物线的另一个交点为C,点P为抛物线对称轴上的一点,连接PA,PC,设点P的纵坐标为m,当PA=PC时,求m的值;
    (3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,若抛物线y=a(﹣x2+2x+3)(a≠0)与线段MN只有一个交点,请直接写出a的取值范围.

    【解答】解:(1)当y=0时,﹣x2+2x+3=0,
    ∴x1=﹣1,x2=3,
    ∴A (﹣1,0),B(3,0);
    (2)∵抛物线对称轴为:x==1,
    ∴设P(1,m),
    由﹣x2+2x+3=﹣x﹣1得,
    x3=﹣1(舍去),x4=4,
    当x=4时,y=﹣4﹣1=﹣5,
    ∴C(4,﹣5),
    由PA2=PC2得,
    22+m2=(4﹣1)2+(m+5)2,
    ∴m=﹣3;
    (3)可得M(0,5),N(4,5),
    当a>0时,
    ∵y=﹣a(x﹣1)2+4a,
    ∴抛物线的顶点为:(1,4a),
    当4a=5时,只有一个公共点,
    ∴a=,
    当x=0时,y>5,
    ∴3a>5,
    ∴a>,
    ∴a>或a=,
    当a<0时,
    (﹣16+8+3)a≥5,
    ∴a≤﹣1,
    综上所述:a>或a=或a≤﹣1.
    4.(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.
    (1)求抛物线的解析式;
    (2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;
    (3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.


    【解答】解:(1)由题意得:,
    解得:,
    ∴抛物线的解析式为:y=﹣2x2+2x+4;
    (2)△POD不可能是等边三角形,理由如下:
    如图1,取OD的中点E,过点E作EP∥x轴,交抛物线于点P,连接PD,PO,

    ∵C(0,4),D是OD的中点,
    ∴E(0,1),
    当y=1时,﹣2x2+2x+4=1,
    2x2﹣2x﹣3=0,
    解得:x1=,x2=(舍),
    ∴P(,1),
    ∴OD≠PD,
    ∴△POD不可能是等边三角形;
    (3)设点P的坐标为(t,﹣2t2+2t+4),则OH=t,BH=2﹣t,
    分两种情况:
    ①如图2,△CMP∽△BMH,

    ∴∠PCM=∠OBC,∠BHM=∠CPM=90°,
    ∴tan∠OBC=tan∠PCM,
    ∴====2,
    ∴PM=2PC=2t,MH=2BH=2(2﹣t),
    ∵PH=PM+MH,
    ∴2t+2(2﹣t)=﹣2t2+2t+4,
    解得:t1=0,t2=1,
    ∴P(1,4);
    ②如图3,△PCM∽△BHM,则∠PCM=∠BHM=90°,

    过点P作PE⊥y轴于E,
    ∴∠PEC=∠BOC=∠PCM=90°,
    ∴∠PCE+∠EPC=∠PCE+∠BCO=90°,
    ∴∠BCO=∠EPC,
    ∴△PEC∽△COB,
    ∴=,
    ∴=,
    解得:t1=0(舍),t2=,
    ∴P(,);
    综上,点P的坐标为(1,4)或(,).
    5.(2021•梧州)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣1,0),B(0,3),顶点为C.平移此抛物线,得到一条新的抛物线,且新抛物线上的点D(3,﹣1)为原抛物线上点A的对应点,新抛物线顶点为E,它与y轴交于点G,连接CG,EG,CE.
    (1)求原抛物线对应的函数表达式;
    (2)在原抛物线或新抛物线上找一点F,使以点C,E,F,G为顶点的四边形是平行四边形,并求出点F的坐标;
    (3)若点K是y轴上的一个动点,且在点B的上方,过点K作CE的平行线,分别交两条抛物线于点M,N,且点M,N分别在y轴的两侧,当MN=CE时,请直接写出点K的坐标.

    【解答】解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),B(0,3),
    ∴,

    ∴原来抛物线的解析式为y=x2+4x+3.

    (2)∵A(﹣1,0),D(3,﹣1),
    ∴点A向右平移4个单位,再向下平移1个单位得到D,
    ∵原来抛物线的顶点C(﹣2,﹣1),
    ∴点C向右平移4个单位,再向下平移1个单位得到E,
    ∴E(2,﹣2),
    ∴新抛物线的解析式为y=(x﹣2)2﹣2=x2﹣4x+2,
    ∴G(0,2),
    ∵点C,E,F,G为顶点的四边形是平行四边形,
    ∴观察图形可知,满足条件的点F在过点G平行CE的直线上,
    ∵直线CE的解析式为y=﹣x﹣,
    ∴直线GF的解析式为y=﹣x+2,
    由,解得或(舍弃),
    ∴F(﹣4,3),
    ∴FG==,CE==,
    ∴FG=CE,
    ∵FG∥EC,
    ∴四边形ECFG是平行四边形,
    由平移的性质可知当F′(4,1)时,四边形CEF′G是平行四边形,
    但是对于新抛物线y=x2﹣4x+2,x=4时,y=2≠1,
    ∴满足条件的点F 的坐标为(﹣4,3).

    (3)设经过点K的直线为y=﹣x+b,在第二象限与原来抛物线交于点J,
    ∵JM=EC=,MN=,
    ∴JN=2,
    ∴由平移的性质可知,J,N两点的横坐标的绝对值的差为8,
    由,消去y得到,4x2+17x+12﹣4b=0,
    ∴x1+x2=﹣,x1x2=3﹣b,
    ∵|x1﹣x2|=8,
    ∴(x1+x2)2﹣4x1x2=64,
    ∴()2﹣4(3﹣b)=64,
    ∴b=,
    ∴K(0,).

    6.(2021•桂林)如图,已知抛物线y=a(x﹣3)(x+6)过点A(﹣1,5)和点B(﹣5,m),与x轴的正半轴交于点C.
    (1)求a,m的值和点C的坐标;
    (2)若点P是x轴上的点,连接PB,PA,当=时,求点P的坐标;
    (3)在抛物线上是否存在点M,使A,B两点到直线MC的距离相等?若存在,求出满足条件的点M的横坐标;若不存在,请说明理由.

    【解答】解:(1)∵抛物线y=a(x﹣3)(x+6)过点A(﹣1,5),
    ∴5=﹣20a,
    ∴a=﹣,
    ∴抛物线的解析式为y=﹣(x﹣3)(x+6),
    令y=0,则﹣(x﹣3)(x+6)=0,解得x=3或﹣6,
    ∴C(3,0),
    当x=﹣5时,y=﹣×(﹣8)×1=2,
    ∴B(﹣5,2),
    ∴m=2.

    (2)设P(t,0),则有=,
    整理得,21t2+242t+621=0,
    解得t=﹣或﹣,
    经检验t=﹣或﹣是方程的解,
    ∴满足条件的点P坐标为(﹣,0)或(﹣,0).

    (3)存在.连接AB,设AB的中点为T.
    ①当直线CM经过AB的中点T时,满足条件.
    ∵A(﹣1,5),B(﹣5,2),TA=TB,
    ∴T(﹣3,),
    ∵C(3,0),
    ∴直线CT的解析式为y=﹣x+,
    由,解得(即点C)或,
    ∴M(﹣,),
    ②CM′∥AB时,满足条件,
    ∵直线AB的解析式为y=x+,
    ∴直线CM′的解析式为y=x﹣,
    由,解得(即点C)或,
    ∴M′(﹣9,﹣9),
    综上所述,满足条件的点M的横坐标为﹣或﹣9.

    7.(2021•玉林)已知抛物线:y=ax2﹣3ax﹣4a(a>0)与x轴交点为A,B(A在B的左侧),顶点为D.
    (1)求点A,B的坐标及抛物线的对称轴;
    (2)若直线y=﹣x与抛物线交于点M,N,且M,N关于原点对称,求抛物线的解析式;
    (3)如图,将(2)中的抛物线向上平移,使得新的抛物线的顶点D′在直线l:y=上,设直线l与y轴的交点为O′,原抛物线上的点P平移后的对应点为点Q,若O′P=O′Q,求点P,Q的坐标.

    【解答】解:(1)取y=0,则有ax2﹣3ax﹣4a=0,
    即x2﹣3x﹣4=0,
    解得x1=﹣1,x2=4,
    ∴A(﹣1,0),B(4,0),
    对称轴为直线x=,
    (2)设M的横坐标为x1,N的横坐标为x2,
    根据题意得:,
    即,

    又∵M,N关于原点对称,
    ∴,
    ∴a=,
    ∴,
    (3)∵,
    由题意得向上平移后的抛物线解析式为,
    ∴抛物线向上平移了4个单位,
    设P(x,),则Q(x,),
    由题意得O'(0,),
    ∵O′P=O′Q,
    ∴,
    解得,,
    若,
    则y=,
    ∴P(,﹣),Q(,),
    若,
    则y=,
    ∴P(,﹣),Q(,),
    综上,P(,﹣),Q(,)或P(,﹣),Q(,).
    8.(2020•河池)在平面直角坐标系xOy中,抛物线与x轴交于(p,0),(q,0),则该抛物线的解析式可以表示为:
    y=a(x﹣p)(x﹣q)=ax2﹣a(p+q)x+apq.
    (1)若a=1,抛物线与x轴交于(1,0),(5,0),直接写出该抛物线的解析式和顶点坐标;
    (2)若a=﹣1,如图(1),A(﹣1,0),B(3,0),点M(m,0)在线段AB上,抛物线C1与x轴交于A,M,顶点为C;抛物线C2与x轴交于B,M,顶点为D.当A,C,D三点在同一条直线上时,求m的值;
    (3)已知抛物线C3与x轴交于A(﹣1,0),B(3,0),线段EF的端点E(0,3),F(4,3).若抛物线C3与线段EF有公共点,结合图象,在图(2)中探究a的取值范围.

    【解答】解:(1)由题意抛物线的解析式为y=(x﹣1)(x﹣5)=x2﹣6x+5=(x﹣3)2﹣4,
    ∴y=x2﹣6x+5,抛物线的顶点坐标为(3,﹣4).

    (2)如图1中,过点C作CE⊥AB于E,过点D作DF⊥AB于F.



    由题意抛物线C1为y=﹣(x+1)(x﹣m)=﹣(x﹣)2+,
    ∴C(,),
    抛物线C2为y=﹣(x﹣m)(x﹣3)=﹣(x﹣)2+,
    ∴D(,),
    ∵A,C,D共线,CE∥DF,
    ∴=,
    ∴=,
    解得m=,
    经检验,m= 是分式方程的解,
    ∴m=.

    (3)如图2﹣1,当a>0时,

    设抛物线的解析式为y=a(x+1)(x﹣3),
    当抛物线经过F(4,3)时,3=a×5×1,
    ∴a=,
    观察图象可知当a≥时,满足条件.
    如图2﹣2中,当a<0时,顶点在线段EF上时,顶点为(1,3),

    把(1,3)代入y=a(x+1)(x﹣3),可得a=﹣,
    观察图象可知当a≤﹣时,满足条件,
    综上所述,满足条件的a的范围为:a≥或a≤﹣.
    9.(2020•玉林)如图,已知抛物线:y1=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C.
    (1)直接写出点A,B,C的坐标;
    (2)将抛物线y1经过向右与向下平移,使得到的抛物线y2与x轴交于B,B'两点(B'在B的右侧),顶点D的对应点为点D',若∠BD'B'=90°,求点B'的坐标及抛物线y2的解析式;
    (3)在(2)的条件下,若点Q在x轴上,则在抛物线y1或y2上是否存在点P,使以B′,C,Q,P为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P的坐标;如果不存在,请说明理由.

    【解答】解:(1)对于y1=﹣x2﹣2x+3,令y1=0,得到﹣x2﹣2x+3=0,解得x=﹣3或1,
    ∴A(﹣3,0),B(1,0),
    令x=0,得到y1=3,
    ∴C(0,3).

    (2)设平移后的抛物线的解析式为y2=﹣(x﹣a)2+b,
    如图1中,过点D′作D′H⊥OB′于H,连接BD′.

    ∵D′是抛物线的顶点,
    ∴D′B=D′B′,D′(a,b),
    ∵∠BD′B′=90°,D′H⊥BB′,
    ∴BH=HB′,
    ∴D′H=BH=HB′=b,
    ∴a=1+b,
    又∵y2=﹣(x﹣a)2+b,经过B(1,0),
    ∴b=(1﹣a)2,
    解得a=2或1(不合题意舍弃),b=1,
    ∴B′(3,0),y2=﹣(x﹣2)2+1=﹣x2+4x﹣3.

    (3)如图2中,

    观察图象可知,当点P的纵坐标为3或﹣3时,存在满足条件的平行四边形.
    对于y1=﹣x2﹣2x+3,令y1=3,x2+2x=0,解得x=0或﹣2,可得P1(﹣2,3),
    令y1=﹣3,则x2+2x﹣6=0,解得x=﹣1,可得P2(﹣1﹣,﹣3),P3(﹣1+,﹣3),
    对于y2=﹣x2+4x﹣3,令y2=3,方程无解,
    令y2=﹣3,则x2﹣4x=0,解得x=0或4,可得P4(0,﹣3),P5(4,﹣3),
    综上所述,满足条件的点P的坐标为(﹣2,3)或(﹣1﹣,﹣3)或(﹣1+,﹣3)或(0,﹣3)或(4,﹣3).
    相关试卷

    第22章二次函数(解答题中档题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西): 这是一份第22章二次函数(解答题中档题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西),共19页。试卷主要包含了之间的函数图象如图所示,,顶点为M等内容,欢迎下载使用。

    第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西): 这是一份第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西),共35页。试卷主要包含了在x轴上方的抛物线对称轴上运动,,与y轴交于点C,,对称轴为直线x=2,,顶点为B等内容,欢迎下载使用。

    第22章+二次函数(解答题压轴题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北): 这是一份第22章+二次函数(解答题压轴题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共49页。试卷主要包含了,他们称,,与y轴交于点C等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第22章二次函数(解答题压轴题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map