所属成套资源:[中考真题】各版本各地区九年级数学上学期期末复习培优练习
第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江)
展开
这是一份第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江),共30页。
第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江)
一.选择题(共10小题)
1.(2022•牡丹江)圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是( )
A.90° B.100° C.120° D.150°
2.(2022•牡丹江)如图,BD是⊙O的直径,A,C在圆上,∠A=50°,∠DBC的度数是( )
A.50° B.45° C.40° D.35°
3.(2022•大庆)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是( )
A.60π B.65π C.90π D.120π
4.(2022•哈尔滨)如图,AD,BC是⊙O的直径,点P在BC的延长线上,PA与⊙O相切于点A,连接BD,若∠P=40°,则∠ADB的度数为( )
A.65° B.60° C.50° D.25°
5.(2021•牡丹江)如图,点A,B,C为⊙O上的三点,∠AOB=∠BOC,∠BAC=30°,则∠AOC的度数为( )
A.100° B.90° C.80° D.60°
6.(2021•牡丹江)一条弧所对的圆心角为135°,弧长等于半径为3cm的圆的周长的5倍,则这条弧的半径为( )
A.45cm B.40cm C.35cm D.30cm
7.(2020•牡丹江)如图,四边形ABCD内接于⊙O,连接BD.若,∠BDC=50°,则∠ADC的度数是( )
A.125° B.130° C.135° D.140°
8.(2020•大庆)底面半径相等的圆锥与圆柱的高的比为1:3,则圆锥与圆柱的体积的比为( )
A.1:1 B.1:3 C.1:6 D.1:9
9.(2020•黑龙江)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的倍,则∠ASB的度数是( )
A.22.5° B.30° C.45° D.60°
10.(2020•哈尔滨)如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为( )
A.25° B.20° C.30° D.35°
二.填空题(共29小题)
11.(2022•牡丹江)⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AC的长为 .
12.(2022•哈尔滨)一个扇形的面积为7πcm2,半径为6cm,则此扇形的圆心角是 度.
13.(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为 度.
14.(2022•绥化)已知圆锥的高为8cm,母线长为10cm,则其侧面展开图的面积为 .
15.(2022•黑龙江)若一个圆锥的母线长为5cm,它的侧面展开图的圆心角为120°,则这个圆锥的底面半径为 cm.
16.(2022•黑龙江)如图,在⊙O中,AB是⊙O的弦,⊙O的半径为3cm.C为⊙O上一点,∠ACB=60°,则AB的长为 cm.
17.(2022•齐齐哈尔)圆锥的母线长为5cm,高为4cm,则该圆锥侧面展开图扇形的圆心角为 °.
18.(2022•黑龙江)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为 .
19.(2022•黑龙江)已知圆锥的高是12,底面圆的半径为5,则这个圆锥的侧面展开图的周长为 .
20.(2021•牡丹江)半径为12cm的圆中,垂直平分半径的弦长为 .
21.(2021•哈尔滨)一个扇形的弧长是8πcm,圆心角是144°,则此扇形的半径是 cm.
22.(2021•黑龙江)如图是一个圆锥形冰淇淋外壳.(不计厚度)已知其母线长为12cm,底面圆的半径为3cm,则这个冰淇淋外壳的侧面积等于 cm2.
23.(2021•大庆)一个圆柱形橡皮泥,底面积是12cm2,高是5cm,如果这个橡皮泥的一半,把它捏成高为5cm的圆锥,则这个圆锥的底面积是 cm2.
24.(2021•大庆)如图,作⊙O的任意一条直径FC,分别以F、C为圆心,以FO的长为半径作弧,与⊙O相交于点E、A和D、B,顺次连接AB、BC、CD、DE、EF、FA,得到六边形ABCDEF,则⊙O的面积与阴影区域的面积的比值为 .
25.(2021•齐齐哈尔)圆锥的底面半径为6cm,它的侧面展开图扇形的圆心角为240°,则该圆锥的母线长为 cm.
26.(2021•黑龙江)若一个圆锥的底面半径为1cm,它的侧面展开图的圆心角为90°,则这个圆锥的母线长为 cm.
27.(2021•黑龙江)如图,在⊙O中,AB是直径,弦AC的长为5cm,点D在圆上且∠ADC=30°,则⊙O的半径为 cm.
28.(2021•黑龙江)如图,在Rt△AOB中,∠AOB=90°,OA=4,OB=6,以点O为圆心,3为半径的⊙O,与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点,则PC+PD的最小值为 .
29.(2021•黑龙江)如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.若OA=2,则阴影部分的面积为 .
30.(2021•黑龙江)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为 .
31.(2021•绥化)一条弧所对的圆心角为135°,弧长等于半径为5cm的圆的周长的3倍,则这条弧的半径为 cm.
32.(2020•哈尔滨)一个扇形的面积是13πcm2,半径是6cm,则此扇形的圆心角是 度.
33.(2020•黑龙江)在半径为的⊙O中,弦AB垂直于弦CD,垂足为P,AB=CD=4,则S△ACP= .
34.(2020•牡丹江)AB是⊙O的弦,OM⊥AB,垂足为M,连接OA.若△AOM中有一个角是30°,OM=2,则弦AB的长为 .
35.(2020•黑龙江)如图,AD是△ABC的外接圆⊙O的直径,若∠BAD=40°,则∠ACB= °.
36.(2020•绥化)如图,正五边形ABCDE内接于⊙O,点P为上一点(点P与点D,点E不重合),连接PC、PD,DG⊥PC,垂足为G,∠PDG等于 度.
37.(2020•绥化)已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是 度.
38.(2020•黑龙江)如图,AD是△ABC的外接圆⊙O的直径,若∠BCA=50°,则∠ADB= °.
39.(2020•黑龙江)小明在手工制作课上,用面积为150πcm2,半径为15cm的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为 cm.
三.解答题(共2小题)
40.(2022•齐齐哈尔)如图,在△ABC中,AB=AC,以AB为直径作⊙O,AC与⊙O交于点D,BC与⊙O交于点E,过点C作CF∥AB,且CF=CD,连接BF.
(1)求证:BF是⊙O的切线;
(2)若∠BAC=45°,AD=4,求图中阴影部分的面积.
41.(2020•齐齐哈尔)如图,AB为⊙O的直径,C、D为⊙O上的两个点,==,连接AD,过点D作DE⊥AC交AC的延长线于点E.
(1)求证:DE是⊙O的切线.
(2)若直径AB=6,求AD的长.
第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江)
参考答案与试题解析
一.选择题(共10小题)
1.(2022•牡丹江)圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是( )
A.90° B.100° C.120° D.150°
【解答】解:圆锥侧面展开图的弧长是:2π×1=2π,
设圆心角的度数是n度.
则=2π,
解得:n=120.
故选:C.
2.(2022•牡丹江)如图,BD是⊙O的直径,A,C在圆上,∠A=50°,∠DBC的度数是( )
A.50° B.45° C.40° D.35°
【解答】解:∵BD是⊙O的直径,
∴∠BCD=90°,
∵∠D=∠A=50°,
∴∠DBC=90°﹣∠D=40°.
故选:C.
3.(2022•大庆)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是( )
A.60π B.65π C.90π D.120π
【解答】解:圆锥侧面展开图扇形的半径为:=13,其弧长为:2×π×5=10π,
∴圆锥侧面展开图的面积为:=65π.
故选:B.
4.(2022•哈尔滨)如图,AD,BC是⊙O的直径,点P在BC的延长线上,PA与⊙O相切于点A,连接BD,若∠P=40°,则∠ADB的度数为( )
A.65° B.60° C.50° D.25°
【解答】解:∵PA与⊙O相切于点A,∠P=40°,
∴∠OAP=90°,
∴∠BOD=∠AOP=90°﹣∠P=50°,
∵OB=OD,
∴∠ADB=∠OBD=(180°﹣∠BOD)÷2=(180°﹣50°)÷2=65°,
故选:A.
5.(2021•牡丹江)如图,点A,B,C为⊙O上的三点,∠AOB=∠BOC,∠BAC=30°,则∠AOC的度数为( )
A.100° B.90° C.80° D.60°
【解答】解:∵∠BOC=2∠BAC=60°,OB=OC,
∴△BOC是等边三角形,
∵∠AOB=∠BOC=20°,
∴∠AOC=∠BOC+∠AOB=60°+20°=80°,
故选:C.
6.(2021•牡丹江)一条弧所对的圆心角为135°,弧长等于半径为3cm的圆的周长的5倍,则这条弧的半径为( )
A.45cm B.40cm C.35cm D.30cm
【解答】解:设弧所在圆的半径为rcm,
由题意得,=2π×3×5,
解得,r=40.
故选:B.
7.(2020•牡丹江)如图,四边形ABCD内接于⊙O,连接BD.若,∠BDC=50°,则∠ADC的度数是( )
A.125° B.130° C.135° D.140°
【解答】解:连接OA,OB,OC,
∵∠BDC=50°,
∴∠BOC=2∠BDC=100°,
∵,
∴∠BOC=∠AOC=100°,
∴∠ABC=∠AOC=50°,
∴∠ADC=180°﹣∠ABC=130°.
故选:B.
8.(2020•大庆)底面半径相等的圆锥与圆柱的高的比为1:3,则圆锥与圆柱的体积的比为( )
A.1:1 B.1:3 C.1:6 D.1:9
【解答】解:设圆锥和圆柱的底面圆的半径为r,圆锥的高为h,则圆柱的高为3h,
所以圆锥与圆柱的体积的比=(×πr2×h):(πr2×3h)=1:9.
故选:D.
9.(2020•黑龙江)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的倍,则∠ASB的度数是( )
A.22.5° B.30° C.45° D.60°
【解答】解:设圆心为O,连接OA、OB,如图,
∵弦AB的长度等于圆半径的倍,
即AB=OA,
∴OA2+OB2=AB2,
∴∠AOB=90°,
∴∠ASB=∠AOB=45°.
故选:C.
10.(2020•哈尔滨)如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为( )
A.25° B.20° C.30° D.35°
【解答】解:∵AB为圆O的切线,
∴AB⊥OA,即∠OAB=90°,
∵∠ADC=35°,
∴∠AOB=2∠ADC=70°,
∴∠ABO=90°﹣70°=20°.
故选:B.
二.填空题(共29小题)
11.(2022•牡丹江)⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AC的长为 4或2 .
【解答】解:连接OA,
∵OM:OC=3:5,
设OC=5x,OM=3x,则DM=2x,
∵CD=10,
∴OM=3,OA=OC=5,
∵AB⊥CD,
∴AM=BM=AB,
在Rt△OAM中,OA=5,
AM=,
当如图1时,CM=OC+OM=5+3=8,
在Rt△ACM中,AC=;
当如图2时,CM=OC﹣OM=5﹣3=2,
在Rt△ACM中,AC=.
综上所述,AC的长为4或2.
故答案为:4或2.
12.(2022•哈尔滨)一个扇形的面积为7πcm2,半径为6cm,则此扇形的圆心角是 70 度.
【解答】解:设扇形的圆心角为n°,
则,
∴n=70,
故答案为:70.
13.(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为 12 度.
【解答】解:如图,连接OA,
正六边形的中心角为∠AOB=360°÷6=60°,
正五边形的中心角为∠AOH=360°÷5=72°,
∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.
故答案为:12.
14.(2022•绥化)已知圆锥的高为8cm,母线长为10cm,则其侧面展开图的面积为 60πcm2 .
【解答】解:圆锥的高为8cm,母线长为10cm,
由勾股定理得,底面半径=6cm,
侧面展开图的面积=πrl=π×6×10=60πcm2.
故答案为:60πcm2.
15.(2022•黑龙江)若一个圆锥的母线长为5cm,它的侧面展开图的圆心角为120°,则这个圆锥的底面半径为 cm.
【解答】解:圆锥侧面展开图扇形的弧长为:=,
设圆锥的底面半径为r,
则2πr=,
∴r=cm.
故答案为:.
16.(2022•黑龙江)如图,在⊙O中,AB是⊙O的弦,⊙O的半径为3cm.C为⊙O上一点,∠ACB=60°,则AB的长为 3 cm.
【解答】解:连接AO并延长交⊙O于点D,
∵AD是⊙O的直径,
∴∠ABD=90°,
∵∠ACB=60°,
∴∠ADB=∠ACB=60°,
在Rt△ABD中,AD=6cm,
∴AB=AD•sin60°=6×=3(cm),
故答案为:3.
17.(2022•齐齐哈尔)圆锥的母线长为5cm,高为4cm,则该圆锥侧面展开图扇形的圆心角为 216 °.
【解答】解:圆锥的底面圆的半径为:=3,
设圆锥侧面展开图的圆心角为n°,
则2π×3=,
∴n=216,
∴圆锥侧面展开图的圆心角为216°,
故答案为:216.
18.(2022•黑龙江)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为 2 .
【解答】解:连接OA,由AB垂直平分OC,得到OD=OC=1,
∵OC⊥AB,
∴D为AB的中点,
则AB=2AD=2=2=2.
故答案为:2.
19.(2022•黑龙江)已知圆锥的高是12,底面圆的半径为5,则这个圆锥的侧面展开图的周长为 26+10π .
【解答】解:∵圆锥的底面半径是5,高是12,
∴圆锥的母线长为13,
∴这个圆锥的侧面展开图的周长=2×13+2π×5=26+10π.
故答案为26+10π.
20.(2021•牡丹江)半径为12cm的圆中,垂直平分半径的弦长为 12cm .
【解答】解:如图所示:设圆为⊙O,弦为AB,半径OC被AB垂直平分于点D,连接OA,
由题意可得:OA=OC=12cm,CO⊥AB,OD=DC=6cm,
∵CO⊥AB,
∴AD=DB,
在Rt△ODA中,由勾股定理可得:AD===6(cm),
∴AB=2AD=12(cm),
故答案为:12cm.
21.(2021•哈尔滨)一个扇形的弧长是8πcm,圆心角是144°,则此扇形的半径是 10 cm.
【解答】解:设扇形的半径为rcm,由题意得,
=8π,
解得r=10(cm),
故答案为:10.
22.(2021•黑龙江)如图是一个圆锥形冰淇淋外壳.(不计厚度)已知其母线长为12cm,底面圆的半径为3cm,则这个冰淇淋外壳的侧面积等于 36π cm2.
【解答】解:∵底面圆的半径为3cm,
∴底面圆的周长为6π(cm),即圆锥侧面展开图扇形的弧长为6πcm,
∴这个冰淇淋外壳的侧面积=×12×6π=36π(cm2)
故答案为:36π.
23.(2021•大庆)一个圆柱形橡皮泥,底面积是12cm2,高是5cm,如果这个橡皮泥的一半,把它捏成高为5cm的圆锥,则这个圆锥的底面积是 18 cm2.
【解答】解:设这个圆锥的底面积为Scm2,
根据题意得×S×5=12×,解得S=18.
故答案为18.
24.(2021•大庆)如图,作⊙O的任意一条直径FC,分别以F、C为圆心,以FO的长为半径作弧,与⊙O相交于点E、A和D、B,顺次连接AB、BC、CD、DE、EF、FA,得到六边形ABCDEF,则⊙O的面积与阴影区域的面积的比值为 .
【解答】解:连接EB,AD,
设⊙O的半径为r,
⊙O的面积S=πr2,
弓形EF,AF的面积与弓形EO,AO的面积相等,
弓形CD,BC的面积与弓形OD,OB的面积相等,
∴图中阴影部分的面积=S△EDO+S△ABO,
∵OE=OD=AO=OB=OF=OC=r,
∴△EDO、△AOB是正三角形,
∴阴影部分的面积=×r×r×2=r2,
∴⊙O的面积与阴影区域的面积的比值为,
故答案为:.
25.(2021•齐齐哈尔)圆锥的底面半径为6cm,它的侧面展开图扇形的圆心角为240°,则该圆锥的母线长为 9 cm.
【解答】解:圆锥的底面周长为:2π×6=12π(cm);
∴圆锥侧面展开图的弧长为12πcm,
设圆锥的母线长为Rcm,
∴=12π,
解得R=9.
故答案为:9.
26.(2021•黑龙江)若一个圆锥的底面半径为1cm,它的侧面展开图的圆心角为90°,则这个圆锥的母线长为 4 cm.
【解答】解:设母线长为lcm,
则=2π×1
解得:l=4.
故答案为:4.
27.(2021•黑龙江)如图,在⊙O中,AB是直径,弦AC的长为5cm,点D在圆上且∠ADC=30°,则⊙O的半径为 5 cm.
【解答】解:如图,连接OC.
∵∠AOC=2∠ADC,∠ADC=30°,
∴∠AOC=60°,
∵OA=OC,
∴△AOC是等边三角形,
∴OA=AC=5(cm),
∴⊙O的半径为5cm.
故答案为:5.
28.(2021•黑龙江)如图,在Rt△AOB中,∠AOB=90°,OA=4,OB=6,以点O为圆心,3为半径的⊙O,与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点,则PC+PD的最小值为 2 .
【解答】解:延长CO交⊙O于点E,连接ED,交AO于点P,则PC+PD的值最小,最小值为线段DE的长.
∵CD⊥OB,
∴∠DCB=90°,
∵∠AOB=90°,
∴∠DCB=∠AOB,
∴CD∥AO,
∴=,
∴=,
∴CD=2,
在Rt△CDE中,DE===2,
∴PC+PD的最小值为2.
故答案为:2.
29.(2021•黑龙江)如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.若OA=2,则阴影部分的面积为 +π .
【解答】解:作OE⊥AB于点F,
∵在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.OA=2,
∴∠AOD=90°,∠BOC=30°,OA=OB,
∴∠OAB=∠OBA=30°,
∴OD=OA•tan30°=×=2,AD=4,AB=2AF=2×2×=6,OF=,
∴BD=2,
∴阴影部分的面积是:S△AOD+S扇形OBC﹣S△BDO==+π,
故答案为:+π.
30.(2021•黑龙江)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为 .
【解答】解:连接CO,OB,
则∠O=2∠A=60°,
∵OC=OB,
∴△BOC是等边三角形,
∵⊙O的半径为2,
∴BC=2,
∵CD⊥AB,∠CBA=45°,
∴CD=BC=,
故答案为:.
31.(2021•绥化)一条弧所对的圆心角为135°,弧长等于半径为5cm的圆的周长的3倍,则这条弧的半径为 40 cm.
【解答】解:设弧所在圆的半径为r,
由题意得,,
解得,r=40cm.
故应填40.
32.(2020•哈尔滨)一个扇形的面积是13πcm2,半径是6cm,则此扇形的圆心角是 130 度.
【解答】解:设这个扇形的圆心角为n°,
=13π,
解得,n=130,
故答案为:130.
33.(2020•黑龙江)在半径为的⊙O中,弦AB垂直于弦CD,垂足为P,AB=CD=4,则S△ACP= 或或 .
【解答】解:作OE⊥AB于E,OF⊥CD于F,连接OD、OB,
则AE=BE=AB=2,DF=CF=CD=2,
如图1,
在Rt△OBE中,∵OB=,BE=2,
∴OE==1,
同理可得OF=1,
∵AB⊥CD,
∴四边形OEPF为矩形,
∴PE=PF=1,
∴PA=PC=1,
∴S△APC==;
如图2,
同理:S△APC==;
如图3,
同理:S△APC==;
故答案为:或或.
34.(2020•牡丹江)AB是⊙O的弦,OM⊥AB,垂足为M,连接OA.若△AOM中有一个角是30°,OM=2,则弦AB的长为 12或4 .
【解答】解:∵OM⊥AB,
∴AM=BM,
若∠OAM=30°,
则tan∠OAM=,
∴AM=6,
∴AB=2AM=12;
若∠AOM=30°,
则tan∠AOM=,
∴AM=2,
∴AB=2AM=4.
故答案为:12或4.
35.(2020•黑龙江)如图,AD是△ABC的外接圆⊙O的直径,若∠BAD=40°,则∠ACB= 50 °.
【解答】解:连接BD,如图,
∵AD为△ABC的外接圆⊙O的直径,
∴∠ABD=90°,
∴∠D=90°﹣∠BAD=90°﹣40°=50°,
∴∠ACB=∠D=50°.
故答案为50.
36.(2020•绥化)如图,正五边形ABCDE内接于⊙O,点P为上一点(点P与点D,点E不重合),连接PC、PD,DG⊥PC,垂足为G,∠PDG等于 54 度.
【解答】解:连接OC、OD,如图所示:
∵ABCDE是正五边形,
∴∠COD==72°,
∴∠CPD=∠COD=36°,
∵DG⊥PC,
∴∠PGD=90°,
∴∠PDG=90°﹣∠CPD=90°﹣36°=54°,
故答案为:54.
37.(2020•绥化)已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是 100 度.
【解答】解:设这个圆锥的侧面展开图的圆心角为n°,
根据题意得2π×2.5=,解得n=100,
即这个圆锥的侧面展开图的圆心角为100°.
故答案为:100.
38.(2020•黑龙江)如图,AD是△ABC的外接圆⊙O的直径,若∠BCA=50°,则∠ADB= 50 °.
【解答】解:∵AD是△ABC的外接圆⊙O的直径,
∴点A,B,C,D在⊙O上,
∵∠BCA=50°,
∴∠ADB=∠BCA=50°,
故答案为:50.
39.(2020•黑龙江)小明在手工制作课上,用面积为150πcm2,半径为15cm的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为 10 cm.
【解答】解:∵S=l•R,
∴•l•15=150π,解得l=20π,
设圆锥的底面半径为rcm,
∴2π•r=20π,
∴r=10(cm).
故答案为:10.
三.解答题(共2小题)
40.(2022•齐齐哈尔)如图,在△ABC中,AB=AC,以AB为直径作⊙O,AC与⊙O交于点D,BC与⊙O交于点E,过点C作CF∥AB,且CF=CD,连接BF.
(1)求证:BF是⊙O的切线;
(2)若∠BAC=45°,AD=4,求图中阴影部分的面积.
【解答】(1)证明:如图1,连接BD,
∵AB是直径,
∴∠ADB=∠BDC=90°,
∵AB=AC,
∴∠ABC=∠ACB,
∵AB∥CF,
∴∠ABC=∠FCB,
∴∠ACB=∠FCB,
在△DCB和△FCB中,
,
∴△DCB≌△FCB(SAS),
∴∠F=∠CDB=90°,
∵AB∥CF,
∴∠ABF+∠F=180°,
∴∠ABF=90°,即AB⊥BF,
∵AB为直径,
∴BF是⊙O的切线;
(2)解:如图2,连接BD、OE交于点M,连接AE,
∵AB是直径,
∴AE⊥BC,AD⊥BD,
∵∠BAC=45°,AD=4,
∴△ABD是等腰直角三角形,
∴BD=AD=4,AB===4,
∴OA=OB=2,
∴OE是△ADB的中位线,
∴OE∥AD,
∴∠BOE=∠BAC=45°,OE⊥BD,,
∴BM=BD=×4=2,
∴S阴影部分=S扇形BOE﹣S△BOE
=﹣××2
=.
41.(2020•齐齐哈尔)如图,AB为⊙O的直径,C、D为⊙O上的两个点,==,连接AD,过点D作DE⊥AC交AC的延长线于点E.
(1)求证:DE是⊙O的切线.
(2)若直径AB=6,求AD的长.
【解答】(1)证明:连接OD,
∵==,
∴∠BOD=180°=60°,
∵=,
∴∠EAD=∠DAB=BOD=30°,
∵OA=OD,
∴∠ADO=∠DAB=30°,
∵DE⊥AC,
∴∠E=90°,
∴∠EAD+∠EDA=90°,
∴∠EDA=60°,
∴∠EDO=∠EDA+∠ADO=90°,
∴OD⊥DE,
∴DE是⊙O的切线;
(2)解:连接BD,
∵AB为⊙O的直径,
∴∠ADB=90°,
∵∠DAB=30°,AB=6,
∴BD=AB=3,
∴AD==3.
相关试卷
这是一份第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州),共36页。
这是一份第24章+圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(内蒙古),共26页。
这是一份第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西),共49页。