中考冲刺:创新、开放与探究型问题--巩固练习(提高)
展开
这是一份中考冲刺:创新、开放与探究型问题--巩固练习(提高),共11页。
一、选择题
1. 下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数为( )
A、55B、42 C、41D、29
2.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设
Pn﹣1Dn﹣2的中点为Dn﹣1,第n次将纸片折叠,使点A与点Dn﹣1重合,折痕与AD交于点Pn(n>2),则AP6的长为( )
A. B.C. D.
3.下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( )
A.495 B.497 C.501 D.503
二、填空题
4. 如图所示,一个4×2的矩形可以用3种不同的方式分割成2或5或8个小正方形,那么一个5×3的矩形用不同的方式分割后,小正方形的个数可以是____ ____.
5. 一园林设计师要使用长度为4L的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O为圆心的两个同心圆弧和延长后通过O点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.
(1)使图①花圃面积为最大时R-r的值为 ,以及此时花圃面积为 ,其中R、r分别为大圆和小圆的半径;
(2)若L=160 m,r=10 m,使图面积为最大时的θ值为 .
6.如图所示,已知△ABC的面积,
在图(a)中,若,则;
在图(b)中,若,则;
在图(c),若,则.
…
按此规律,若,则________.
三、解答题
7.如图所示,∠ABM为直角,C为线段BA的中点,D是射线BM上的一个动点(不与点B重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.
(1)求证:BF=FD;
(2)∠A在什么范围内变化时,四边形ACFE是梯形?并说明理由;
(3)∠A在什么范围内变化时,线段DE上存在点G,满足条件?并说明理由.
8.如图(a)、(b)、(c),在△ABC中,分别以AB,AC为边,向△ABC外作正三角形、正四边形、正五边形,BE,CD相交于点O.
(1)①如图(a),求证:△ADC≌△ABE;
②探究:
图(a)中,∠BOC=________;
图(b)中,∠BOC=________;
图(c)中,∠BOC=________;
(2)如图(d),已知:AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边.BE,CD的延长相交于点O.
①猜想:图(d)中,∠BOC=________________;(用含n的式子表示)
②根据图(d)证明你的猜想.
9. 如图(a),梯形ABCD中,AD∥BC,∠ABC=90°, AD=9,BC=12,AB=a,在线段BC上任取一点P(P不与B,C重合),连接DP,作射线.PE⊥DP,PE与直线AB交于点E.
(1)试确定CP=3时,点E的位置;
(2)若设CP=x(x>0),BE=y(y>0),试写出y关于自变量x的函数关系式;
(3)若在线段BC上能找到不同的两点P1,P2,使按上述作法得到的点E都与点A重合,试求出此时a的取值范围.
10. 点A,B分别是两条平行线m,n上任意两点,在直线n上找一点C,使BC=k·AB.连接AC,在直线AC上任取一点E,作∠BEF=∠ABC,EF交直线m于点F.
(1)如图(a),当k=1时,探究线段EF与EB的关系,并加以说明;
说明:
①如果你经过反复探索没有解决问题,请写出探索过程(要求至少写三步);
②在完成①之后,可以自己添加条件(添加的条件限定为∠ABC为特殊角),在图(b)中补全图形,完成证明.
(2)如图(c),若∠ABC=90°,k≠l,探究线段EF与EB的关系,并说明理由.
【答案与解析】
一、选择题
1.【答案】C;
【解析】找出规律:∵图②平行四边形有5个=1+2+2,图③平行四边形有11个=1+2+3+2+3,
图④平行四边形有19=1+2+3+4+2+3+4,∴图⑥的平行四边形的个数为1+2+3+4+5+6+2+3+4+5+6=41.
故选C.
2.【答案】A;
【解析】由题意得,AD=BC=,AD1=AD﹣DD1=,AD2=,AD3=,ADn=,
故AP1=,AP2=,AP3=…APn=,
故可得AP6=.
故选A.
3.【答案】A;
【解析】根据题意,当第1位数字是3时,按操作要求得到的数字是3624862486248…,从第2位数字起每隔四位数重复一次6248,因为(100-1)被4整除得24余3,所以这个多位数前100位的所有数字之间和是3+(6+2+4)+(6+2+4+8)×24=495,答案选A.
二、填空题
4.【答案】4或7或9或12或15;
【解析】 一个5×3的矩形可以有下面几种分割方式,如图所示.
5.【答案】(1)R-r的值为,以及此时花圃面积为; (2)θ值为.
【解析】要使花圃面积最大,则必定要求扇环面积最大.
设扇环的圆心角为θ,面积为S,根据题意得:
,
∴
∴
.
∵,
∴S在时取最大值为.
∴花圃面积最大时R-r的值为,最大面积为.
(2)∵当时,S取大值,
∴(m),
(m),
∴.
6.【答案】.
【解析】
…
三、解答题
7.【答案与解析】
解:(1)Rt△AEB中,∵AC=BC,∴CE=AB.
∴CB=CE.∴∠CEB=∠CBE.
∵∠CEF=∠CBF=90°,
∴∠BEF=∠EBF.
∴EF=BF.
∵∠BEF+∠FED=90°,
∠EBD+∠EDB=90°.
∴∠FED=∠EDF.
∴EF=FD.
∴BF=FD.
(2)由(1)得BF=FD,而BC=CA,
∴CF∥AD,即AE∥CF.
若AC∥EF,则AC=EF,∴BC=BF.
∴BA=BD,∠A=45°.
∴当0°<∠A<45°或45°<∠A<90°时,四边形ACFE为梯形.
(3)作GH⊥BD,垂足为H,则GH∥AB.
∵DG=DA,∴DH=DB.
又F为BD的中点,∴H为DF的中点.
∴GH为DF的中垂线.
∴∠GDF=∠GFD.
∵点G在ED上,∴∠EFD≥∠GFD.
∵∠EFD+∠FDE+∠DEF=180°,
∴∠GFD+∠FDE+∠DEF≤180°.
∴3∠EDF≤180°.
∴∠EDF≤60°.
又∠A+∠EDF=90°,
∴30°≤∠A<90°.
∴30°≤∠A<90°时,DE上存在点G,满足条件DG=DA,
8.【答案与解析】
(1)证法一:
∵△ABD与△ACE均为等边三角形,
∴AD=AB,AC=AE,且∠BAD=∠CAE=60°.
∴∠BAD+∠BAC=∠CAE+∠BAC,
即∠DAC=∠BAE.
∴△ADC≌△ABE.
证法二:∵△ABD与△ACE均为等边三角形,
∴AD=AB,AC=AE,
且∠BAD=∠CAE=60°.
∴△ADC可由△ABE绕着点A按顺时针方向旋转60°得到.
∴△ABE≌△ADC.
②120°,90°,72°.
(2)①.
②证法一:依题意,知∠BAD和∠CAE都是正n边形的内角,AB=AD,AE=AC,
∴∠BAD=∠CAE=.
∴∠BAD-∠DAE=∠CAE-∠DAE,
即∠BAE=∠DAC.
∴△ABE≌△ADC.
∴∠ABE=∠ADC.
∵∠ADC+∠ODA=180°,
∴∠ABO+∠ODA=180°.
∴∠ABO+∠ODA+∠DAB+∠BOC=360°.
∴∠BOC+∠DAB=180°.
∴∠BOC=180°-∠DAB=.
证法二:延长BA交CO于F,证∠BOC=∠DAF=180°-∠BAD.
证法三:连接CE.证∠BOC=180°-∠CAE.
9.【答案与解析】
解:(1)作DF⊥BC,F为垂足.
当CP=3时,四边形ADFB是矩形,则CF=3.
∴点P与点F重合.
又∵BF⊥FD,
∴此时点E与点B重合.
(2)(i)当点P在BF上(不与B,F重合)时,(见图(a))
∵∠EPB+∠DPF=90°,∠EPB+∠PEB=90°,
∴∠DPF=∠PEB.
∴Rt△PEB∽△ARt△DPF.
∴. ①
又∵ BE=y,BP=12-x,FP=x-3,FD=a,代入①式,得
∴,整理,
得 ②
(ii)当点P在CF上(不与C,F重合)时,(见上图(b))同理可求得.
由FP=3-x得.
∴
(3)解法一:当点E与A重合时,y=EB=a,此时点P在线段BF上.
由②式得.
整理得. ③
∵在线段BC上能找到两个不同的点P1与P2满足条件,
∴方程③有两个不相等的正实根.
∴△=(-15)2-4×(36+a2)>0.
解得.
又∵a>0,
∴.
解法二:当点E与A重合时,
∵∠APD=90°,
∴点P在以AD为直径的圆上.设圆心为M,则M为AD的中点.
∵在线段BC上能找到两个不同的点P1与P2满足条件,
∴线段BC与⊙M相交.即圆心M到BC的距离d满足. ④
又∵AD∥BC,
∴d=a.
∴由④式得.
10.【答案与解析】
解:(1)EF=EB.
证明:如图(d),以E为圆心,EA为半径画弧交直线m于点M,连接EM.
∴EM=EA,∴∠EMA=∠EAM.
∵BC=k·AB,k=1,
∴BC=AB.
∴∠CAB=∠ACB.
∵m∥n,∴∠MAC=∠ACB,∠FAB=∠ABC.
∴∠MAC=∠CAB.
∴∠CAB=∠EMA.
∵∠BEF=∠ABC,
∴∠BEF=∠FAB.
∵∠AHF=∠EHB,
∴∠AFE=∠ABE.
∴△AEB≌△MEF.
∴EF=EB.
探索思路:如上图(a),∵BC=k·AB,k=1,
∴BC=AB.
∴∠CAB=∠ACB.
∵m∥n,∴∠MAC=∠ACB.
添加条件:∠ABC=90°.
证明:如图(e),在直线m上截取AM=AB,连接ME.
∵ BC=k·AB,k=1,
∴ BC=AB.
∵ ∠ABC=90°,
∴ ∠CAB=∠ACB=45°.
∵ m∥n,
∴ ∠MAE=∠ACB=∠CAB=45°,∠FAB=90°.
∵ AE=AE,∴△MAE∽△BAE.
∴ EM=EB,∠AME=∠ABE.
∵ ∠BEF=∠ABC=90°,
∴ ∠FAB+∠BEF=180°.
又∵ ∠ABE+∠EFA=180°,
∴ ∠EMF=∠EFA.
∴ EM=EF.
∴ EF=EB.
(2)EF=EB.
说明:如图(f),过点E作EM⊥m,EN⊥AB,垂足为M,N.
∴ ∠EMF=∠ENA=∠ENB=90°.
∵ m∥n,∠ABC=90°,
∴ ∠MAB=90°.
∴ 四边形MENA为矩形.
∴ ME=NA,∠MEN=90°.
∵∠BEF=∠ABC=90°.
∴∠MEF=∠NEB.
∴△MEF∽△NEB.
∴,
∴
在Rt△ANE和Rt△ABC中,
,
∴.
相关试卷
这是一份57中考冲刺:创新、开放与探究型问题--知识讲解(提高),共12页。
这是一份58中考冲刺:创新、开放与探究型问题(基础),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份56中考冲刺:创新、开放与探究型问题--知识讲解(基础),共9页。