开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    桂林市重点中学2022年中考五模数学试题含解析

    桂林市重点中学2022年中考五模数学试题含解析第1页
    桂林市重点中学2022年中考五模数学试题含解析第2页
    桂林市重点中学2022年中考五模数学试题含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    桂林市重点中学2022年中考五模数学试题含解析

    展开

    这是一份桂林市重点中学2022年中考五模数学试题含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,在平面直角坐标系中,△ABC位于第二象限,点B的坐标是(﹣5,2),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于于x轴对称的△A2B2C2,则点B的对应点B2的坐标是(  )

    A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)
    2.如图,正六边形ABCDEF内接于,M为EF的中点,连接DM,若的半径为2,则MD的长度为  

    A. B. C.2 D.1
    3.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移6个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是(  )

    A.(4,﹣3) B.(﹣4,3) C.(5,﹣3) D.(﹣3,4)
    4.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为(  )

    A. B.1 C. D.
    5.在平面直角坐标系中,点P(m﹣3,2﹣m)不可能在(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    6.如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()

    A. B. C. D.
    7.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为(  )

    A.(2,2) B.(﹣2,4) C.(﹣2,2) D.(﹣2,2)
    8.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是(  )

    A. B. C. D.
    9.港珠澳大桥目前是全世界最长的跨海大桥,其主体工程“海中桥隧”全长35578米,数据35578用科学记数法表示为(  )
    A.35.578×103 B.3.5578×104
    C.3.5578×105 D.0.35578×105
    10.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为( )
    A.0.129×10﹣2 B.1.29×10﹣2 C.1.29×10﹣3 D.12.9×10﹣1
    二、填空题(共7小题,每小题3分,满分21分)
    11.甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为_____千米.

    12.21世纪纳米技术将被广泛应用.纳米是长度的度量单位,1纳米=0.000000001米,则12纳米用科学记数法表示为_______米.
    13.若m+=3,则m2+=_____.
    14.计算5个数据的方差时,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],则的值为_____.
    15.因式分解:=_______________.
    16.|-3|=_________;
    17.如图,CD是⊙O直径,AB是弦,若CD⊥AB,∠BCD=25°,则∠AOD=_____°.

    三、解答题(共7小题,满分69分)
    18.(10分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,1.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).请你用画树状图或列表的方法,写出点M所有可能的坐标;求点M(x,y)在函数y=﹣的图象上的概率.
    19.(5分)如图,∠BAO=90°,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CD∥BP交半圆P于另一点D,BE∥AO交射线PD于点E,EF⊥AO于点F,连接BD,设AP=m.
    (1)求证:∠BDP=90°.
    (2)若m=4,求BE的长.
    (3)在点P的整个运动过程中.
    ①当AF=3CF时,求出所有符合条件的m的值.
    ②当tan∠DBE=时,直接写出△CDP与△BDP面积比.

    20.(8分)某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?
    21.(10分)解方程:
    (1)x2﹣7x﹣18=0
    (2)3x(x﹣1)=2﹣2x
    22.(10分)如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.
    (1)求证:EF是⊙O的切线;
    (2)求证:=4BP•QP.

    23.(12分)已知顶点为A的抛物线y=a(x-)2-2经过点B(-,2),点C(,2).
    (1)求抛物线的表达式;
    (2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;
    (3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN′,若点N′落在x轴上,请直接写出Q点的坐标.

    24.(14分)解方程
    (1);(2)



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    首先利用平移的性质得到△A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到△A2B2C2中B2的坐标,即可得出答案.
    【详解】
    解:把△ABC向右平移4个单位长度得到△A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),
    则与△A1B1C1关于于x轴对称的△A2B2C2中B2的坐标为(-1,-2),
    故选D.
    【点睛】
    此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.
    2、A
    【解析】
    连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可.
    【详解】
    连接OM、OD、OF,
    ∵正六边形ABCDEF内接于⊙O,M为EF的中点,
    ∴OM⊥OD,OM⊥EF,∠MFO=60°,
    ∴∠MOD=∠OMF=90°,
    ∴OM=OF•sin∠MFO=2×=,
    ∴MD=,
    故选A.

    【点睛】
    本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.
    3、A
    【解析】
    直接利用平移的性质结合轴对称变换得出对应点位置.
    【详解】
    如图所示:

    顶点A2的坐标是(4,-3).
    故选A.
    【点睛】
    此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键.
    4、B
    【解析】
    根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是△ACD的中位线即可求出.
    【详解】
    ∠ACB=90°,∠A=30°,
    BC=AB.
    BC=2,
    AB=2BC=22=4,
    D是AB的中点,
    CD=AB= 4=2.
    E,F分别为AC,AD的中点,
    EF是△ACD的中位线.
    EF=CD= 2=1.
    故答案选B.
    【点睛】
    本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.
    5、A
    【解析】
    分点P的横坐标是正数和负数两种情况讨论求解.
    【详解】
    ①m-3>0,即m>3时,
    2-m<0,
    所以,点P(m-3,2-m)在第四象限;
    ②m-3<0,即m<3时,
    2-m有可能大于0,也有可能小于0,
    点P(m-3,2-m)可以在第二或三象限,
    综上所述,点P不可能在第一象限.
    故选A.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    6、D
    【解析】
    根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.
    【详解】
    ∵四边形ABCD是菱形,
    ∴CO=AC=3,BO=BD=,AO⊥BO,
    ∴.
    ∴.
    又∵,
    ∴BC·AE=24,
    即.
    故选D.
    点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.
    7、D
    【解析】
    分析:作BC⊥x轴于C,如图,根据等边三角形的性质得则易得A点坐标和O点坐标,再利用勾股定理计算出然后根据第二象限点的坐标特征可写出B点坐标;由旋转的性质得则点A′与点B重合,于是可得点A′的坐标.
    详解:作BC⊥x轴于C,如图,

    ∵△OAB是边长为4的等边三角形

    ∴A点坐标为(−4,0),O点坐标为(0,0),
    在Rt△BOC中,
    ∴B点坐标为
    ∵△OAB按顺时针方向旋转,得到△OA′B′,

    ∴点A′与点B重合,即点A′的坐标为
    故选D.
    点睛:考查图形的旋转,等边三角形的性质.求解时,注意等边三角形三线合一的性质.
    8、A
    【解析】试题分析:几何体的主视图有2列,每列小正方形数目分别为2,1.
    故选A.
    考点:三视图
    视频
    9、B
    【解析】
    科学计数法是a×,且,n为原数的整数位数减一.
    【详解】
    解:35578= 3.5578×,
    故选B.
    【点睛】
    本题主要考查的是利用科学计数法表示较大的数,属于基础题型.理解科学计数法的表示方法是解题的关键.
    10、C
    【解析】
    试题分析:0.00129这个数用科学记数法可表示为1.29×10﹣1.故选C.
    考点:科学记数法—表示较小的数.

    二、填空题(共7小题,每小题3分,满分21分)
    11、630
    【解析】
    分析:两车相向而行5小时共行驶了900千米可得两车的速度之和为180千米/时,当相遇后车共行驶了720千米时,甲车到达B地,由此则可求得两车的速度.再根据甲车返回到A地总用时16.5小时,求出甲车返回时的速度即可求解.
    详解:设甲车,乙车的速度分别为x千米/时,y千米/时,
    甲车与乙车相向而行5小时相遇,则5(x+y)=900,解得x+y=180,
    相遇后当甲车到达B地时两车相距720千米,所需时间为720÷180=4小时,
    则甲车从A地到B需要9小时,故甲车的速度为900÷9=100千米/时,乙车的速度为180-100=80千米/时,
    乙车行驶900-720=180千米所需时间为180÷80=2.25小时,
    甲车从B地到A地的速度为900÷(16.5-5-4)=120千米/时.
    所以甲车从B地向A地行驶了120×2.25=270千米,
    当乙车到达A地时,甲车离A地的距离为900-270=630千米.
    点睛:利用函数图象解决实际问题,其关键在于正确理解函数图象横,纵坐标表示的意义,抓住交点,起点.终点等关键点,理解问题的发展过程,将实际问题抽象为数学问题,从而将这个数学问题变化为解答实际问题.
    12、1.2×10﹣1.
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    解:12纳米=12×0.000000001米=1.2×10−1米.
    故答案为1.2×10−1.
    【点睛】
    本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    13、7
    【解析】
    分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.
    详解:把m+=3两边平方得:(m+)2=m2++2=9,
    则m2+=7,
    故答案为:7
    点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.
    14、1
    【解析】
    根据平均数的定义计算即可.
    【详解】
    解:
    故答案为1.
    【点睛】
    本题主要考查平均数的求法,掌握平均数的公式是解题的关键.
    15、a(a+b)(a-b).
    【解析】
    分析:本题考查的是提公因式法和利用平方差公式分解因式.
    解析:原式= a(a+b)(a-b).
    故答案为a(a+b)(a-b).
    16、1
    【解析】
    分析:根据负数的绝对值等于这个数的相反数,即可得出答案.
    解答:解:|-1|=1.
    故答案为1.
    17、50
    【解析】
    由CD是⊙O的直径,弦AB⊥CD,根据垂径定理的即可求得

    =,又由圆周角定理,可得∠AOD=50°.
    【详解】
    ∵CD是⊙O的直径,弦AB⊥CD,
    ∴=,
    ∵∠BCD=25°=,
    ∴∠AOD=2∠BCD=50°,
    故答案为50
    【点睛】
    本题考查角度的求解,解题的关键是利用垂径定理.

    三、解答题(共7小题,满分69分)
    18、(1)树状图见解析,则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2).
    【解析】
    试题分析:(1)画出树状图,可求得所有等可能的结果;(2)由点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),直接利用概率公式求解即可求得答案.
    试题解析:(1)树状图如下图:

    则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)∵点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),
    ∴点M(x,y)在函数y=﹣的图象上的概率为:.
    考点:列表法或树状图法求概率.
    19、(1)详见解析;(2)的长为1;(3)m的值为或;与面积比为或.
    【解析】
    由知,再由知、,据此可得,证≌即可得;
    易知四边形ABEF是矩形,设,可得,证≌得,在中,由,列方程求解可得答案;
    分点C在AF的左侧和右侧两种情况求解:左侧时由知、、,在中,由可得关于m的方程,解之可得;右侧时,由知、、,利用勾股定理求解可得.作于点G,延长GD交BE于点H,由≌知,据此可得,再分点D在矩形内部和外部的情况求解可得.
    【详解】
    如图1,




    、,


    ≌,

    ,,



    四边形ABEF是矩形,
    设,则,




    ≌,

    ≌,

    在中,,即,
    解得:,
    的长为1.
    如图1,当点C在AF的左侧时,
    ,则,

    ,,
    在中,由可得,
    解得:负值舍去;
    如图2,当点C在AF的右侧时,




    ,,
    在中,由可得,
    解得:负值舍去;
    综上,m的值为或;
    如图3,过点D作于点G,延长GD交BE于点H,

    ≌,

    又,且,

    当点D在矩形ABEF的内部时,
    由可设、,
    则,

    则;
    如图4,当点D在矩形ABEF的外部时,

    由可设、,
    则,

    则,
    综上,与面积比为或.
    【点睛】
    本题考查了四边形的综合问题,解题的关键是掌握矩形的判定与性质、全等三角形的判定和性质及勾股定理、三角形的面积等知识点.
    20、(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元.
    【解析】
    (1)设商场第一次购进套运动服,根据“第二批所购数量是第一批购进数量的2倍,但每套进价多了10元”即可列方程求解;
    (2)设每套运动服的售价为y元,根据“这两批运动服每套的售价相同,且全部售完后总利润率不低于20%” 即可列不等式求解.
    【详解】
    (1)设商场第一次购进x套运动服,由题意得

    解这个方程,得
    经检验,是所列方程的根

    答:商场两次共购进这种运动服600套;
    (2)设每套运动服的售价为y元,由题意得

    解这个不等式,得
    答:每套运动服的售价至少是200元.
    【点睛】
    此题主要考查分式方程的应用,一元一次不等式的应用,解题的关键是读懂题意,找到等量及不等关系,正确列方程和不等式求解.
    21、(1)x1=9,x2=﹣2;(2)x1=1,x2=﹣ .
    【解析】
    (1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;
    (2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
    【详解】
    解:(1)x2﹣7x﹣18=0,
    (x﹣9)(x+2)=0,
    x﹣9=0,x+2=0,
    x1=9,x2=﹣2;
    (2)3x(x﹣1)=2﹣2x,
    3x(x﹣1)+2(x﹣1)=0,
    (x﹣1)(3x+2)=0,
    x﹣1=0,3x+2=0,
    x1=1,x2=﹣ .
    【点睛】
    本题考查了解一元二次方程,熟练掌握因式分解法是解此题的关键.
    22、(1)证明见解析;(2)证明见解析.
    【解析】
    试题分析:(1)连接OE,AE,由AB是⊙O的直径,得到∠AEB=∠AEC=90°,根据四边形ABCD是平行四边形,得到PA=PC推出∠OEP=∠OAC=90°,根据切线的判定定理即可得到结论;
    (2)由AB是⊙O的直径,得到∠AQB=90°根据相似三角形的性质得到=PB•PQ,根据全等三角形的性质得到PF=PE,求得PA=PE=EF,等量代换即可得到结论.
    试题解析:(1)连接OE,AE,∵AB是⊙O的直径,∴∠AEB=∠AEC=90°,∵四边形ABCD是平行四边形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切线;
    (2)∵AB是⊙O的直径,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴=PB•PQ,在△AFP与△CEP中,∵∠PAF=∠PCE,∠APF=∠CPE,PA=PC,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∴=4BP•QP.

    考点:切线的判定;平行四边形的性质;相似三角形的判定与性质.
    23、 (1) y=(x-)2-2;(2)△POE的面积为或;(3)点Q的坐标为(-,)或(-,2)或(,2).
    【解析】
    (1)将点B坐标代入解析式求得a的值即可得;
    (2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得=
    ==,即OP=FA,设点P(t,-2t-1),列出关于t的方程解之可得;
    (3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.
    【详解】
    解:(1)把点B(-,2)代入y=a(x-)2-2,
    解得a=1,
    ∴抛物线的表达式为y=(x-)2-2,
    (2)由y=(x-)2-2知A(,-2),
    设直线AB表达式为y=kx+b,代入点A,B的坐标得,
    解得,
    ∴直线AB的表达式为y=-2x-1,
    易求E(0,-1),F(0,-),M(-,0),
    若∠OPM=∠MAF,
    ∴OP∥AF,
    ∴△OPE∽△FAE,
    ∴,
    ∴OP=FA= ,
    设点P(t,-2t-1),则,
    解得t1=-,t2=-,
    由对称性知,当t1=-时,也满足∠OPM=∠MAF,
    ∴t1=-,t2=-都满足条件,
    ∵△POE的面积=OE·|t|,
    ∴△POE的面积为或;
    (3)如图,若点Q在AB上运动,过N′作直线RS∥y轴,交QR于点R,交NE的延长线于点S,

    设Q(a,-2a-1),则NE=-a,QN=-2a.
    由翻折知QN′=QN=-2a,N′E=NE=-a,
    由∠QN′E=∠N=90°易知△QRN′∽△N′SE,
    ∴==,即===2,
    ∴QR=2,ES= ,
    由NE+ES=NS=QR可得-a+=2,
    解得a=-,
    ∴Q(-,),
    如图,若点Q在BC上运动,且Q在y轴左侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.

    设NE=a,则N′E=a.
    易知RN′=2,SN′=1,QN′=QN=3,
    ∴QR=,SE=-a.
    在Rt△SEN′中,(-a)2+12=a2,
    解得a=,
    ∴Q(-,2),
    如图,若点Q在BC上运动,且点Q在y轴右侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.

    设NE=a,则N′E=a.
    易知RN′=2,SN′=1,QN′=QN=3,
    ∴QR=,SE=-a.
    在Rt△SEN′中,(-a)2+12=a2,
    解得a=,
    ∴Q(,2).
    综上,点Q的坐标为(-,)或(-,2)或(,2).
    【点睛】
    本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.
    24、(1),;(2),.
    【解析】
    (1)利用公式法求解可得;
    (2)利用因式分解法求解可得.
    【详解】
    (1)解:∵,,,
    ∴,
    ∴,
    ∴,;
    (2)解:原方程化为:,
    因式分解得:,
    整理得:,
    ∴或,
    ∴,.
    【点睛】
    本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.

    相关试卷

    2023年广西桂林市中考数学二模试卷(含解析):

    这是一份2023年广西桂林市中考数学二模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年重点中学中考数学五模试卷含解析:

    这是一份2022年重点中学中考数学五模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,解分式方程时,去分母后变形为等内容,欢迎下载使用。

    2022年阿坝市重点中学中考五模数学试题含解析:

    这是一份2022年阿坝市重点中学中考五模数学试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列命题是假命题的是,运用乘法公式计算等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map