河北省保定市博野县重点名校2022年中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为( )
A.24 B.18 C.12 D.9
2.下列运算正确的是( )
A.(a2)3=a5 B.(a-b)2=a2-b2 C.3=3 D.=-3
3.某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为( )
A.0.286×105 B.2.86×105 C.28.6×103 D.2.86×104
4.关于x的方程x2+(k2﹣4)x+k+1=0的两个根互为相反数,则k值是( )
A.﹣1 B.±2 C.2 D.﹣2
5.下列算式中,结果等于a5的是( )
A.a2+a3 B.a2•a3 C.a5÷a D.(a2)3
6.下列计算或化简正确的是( )
A. B.
C. D.
7.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为( )
A.14.4×103 B.144×102 C.1.44×104 D.1.44×10﹣4
8.如图,已知反比函数的图象过Rt△ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若△ABO的周长为,AD=2,则△ACO的面积为( )
A. B.1 C.2 D.4
9.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了( )
A.0.9米 B.1.3米 C.1.5米 D.2米
10.下列运算正确的是( )
A.(a﹣3)2=a2﹣9 B.()﹣1=2 C.x+y=xy D.x6÷x2=x3
11.已知圆内接正三角形的面积为3,则边心距是( )
A.2 B.1 C. D.
12.下列各数中最小的是( )
A.0 B.1 C.﹣ D.﹣π
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图放置的正方形,正方形,正方形,…都是边长为的正方形,点在轴上,点,…,都在直线上,则的坐标是__________,的坐标是______.
14.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是_____.
摸球的次数n
100
150
200
500
800
1000
摸到白球的次数m
58
96
116
295
484
601
摸到白球的频率m/n
0.58
0.64
0.58
0.59
0.605
0.601
15.如图,的顶点落在两条平行线上,点D、E、F分别是三边中点,平行线间的距离是8,,移动点A,当时,EF的长度是______.
16.已知图中Rt△ABC,∠B=90°,AB=BC,斜边AC上的一点D,满足AD=AB,将线段AC绕点A逆时针旋转α (0°<α <360°),得到线段AC’,连接DC’,当DC’//BC时,旋转角度α 的值为_________,
17.我们知道:1+3=4,1+3+5=9,1+3+5+7=16,…,观察下面的一列数:-1,2,,-3, 4,-5,6…,将这些数排列成如图的形式,根据其规律猜想,第20行从左到右第3个数是 .
18.已知式子有意义,则x的取值范围是_____
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)我市某中学决定在八年级阳光体育“大课间”活动中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)将两个统计图补充完整;
(3)若调查到喜欢“立定跳远”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
20.(6分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.
(1)求七年级已“建档立卡”的贫困家庭的学生总人数;
(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;
(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.
21.(6分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.求小明选择去白鹿原游玩的概率;用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.
22.(8分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使∠CAD=30,∠CBD=60.
(1)求AB的长(精确到0.1米,参考数据:);
(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.
23.(8分)(2017四川省内江市)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:
(1)这项被调查的总人数是多少人?
(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;
(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.
24.(10分)计算
25.(10分)观察下列等式:
第1个等式:a1=-1,
第2个等式:a2=,
第3个等式:a3==2-,
第4个等式:a4=-2,
…
按上述规律,回答以下问题:请写出第n个等式:an=__________.a1+a2+a3+…+an=_________.
26.(12分)如图所示,PB是⊙O的切线,B为切点,圆心O在PC上,∠P=30°,D为弧BC的中点.
(1)求证:PB=BC;
(2)试判断四边形BOCD的形状,并说明理由.
27.(12分)如图,要修一个育苗棚,棚的横截面是,棚高,长,棚顶与地面的夹角为.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).(参考数据:,,)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.
【详解】∵E是AC中点,
∵EF∥BC,交AB于点F,
∴EF是△ABC的中位线,
∴BC=2EF=2×3=6,
∴菱形ABCD的周长是4×6=24,
故选A.
【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.
2、D
【解析】
试题分析:A、原式=a6,错误;B、原式=a2﹣2ab+b2,错误;C、原式不能合并,错误;
D、原式=﹣3,正确,故选D
考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式.
3、D
【解析】
用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可
【详解】
28600=2.86×1.故选D.
【点睛】
此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键
4、D
【解析】
根据一元二次方程根与系数的关系列出方程求解即可.
【详解】
设方程的两根分别为x1,x1,
∵x1+(k1-4)x+k-1=0的两实数根互为相反数,
∴x1+x1,=-(k1-4)=0,解得k=±1,
当k=1,方程变为:x1+1=0,△=-4<0,方程没有实数根,所以k=1舍去;
当k=-1,方程变为:x1-3=0,△=11>0,方程有两个不相等的实数根;
∴k=-1.
故选D.
【点睛】
本题考查的是根与系数的关系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1=− ,x1x1= ,反过来也成立.
5、B
【解析】
试题解析:A、a2与a3不能合并,所以A选项错误;
B、原式=a5,所以B选项正确;
C、原式=a4,所以C选项错误;
D、原式=a6,所以D选项错误.
故选B.
6、D
【解析】
解:A.不是同类二次根式,不能合并,故A错误;
B. ,故B错误;
C.,故C错误;
D.,正确.
故选D.
7、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
【详解】
14400=1.44×1.
故选C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
8、A
【解析】
在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出AB与OA的长,过D作DE垂直于x轴,得到E为OA中点,求出OE的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可.
【详解】
在Rt△AOB中,AD=2,AD为斜边OB的中线,
∴OB=2AD=4,
由周长为4+2
,得到AB+AO=2,
设AB=x,则AO=2-x,
根据勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,
整理得:x2-2x+4=0,
解得x1=+,x2=-,
∴AB=+,OA=-,
过D作DE⊥x轴,交x轴于点E,可得E为AO中点,
∴OE=OA=(-)(假设OA=+,与OA=-,求出结果相同),
在Rt△DEO中,利用勾股定理得:DE==(+)),
∴k=-DE•OE=-(+))×(-))=1.
∴S△AOC=DE•OE=,
故选A.
【点睛】
本题属于反比例函数综合题,涉及的知识有:勾股定理,直角三角形斜边的中线性质,三角形面积求法,以及反比例函数k的几何意义,熟练掌握反比例的图象与性质是解本题关键.
9、B
【解析】
试题分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC和CE的长即可.
解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,
∴AC=2,
∵BD=0.9,
∴CD=2.1.
在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,
∴EC=0.7,
∴AE=AC﹣EC=2﹣0.7=1.2.
故选B.
考点:勾股定理的应用.
10、B
【解析】
分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.
详解:A. (a﹣3)2=a2﹣6a+9,故该选项错误;
B. ()﹣1=2,故该选项正确;
C.x与y不是同类项,不能合并,故该选项错误;
D. x6÷x2=x6-2=x4,故该选项错误.
故选B.
点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.
11、B
【解析】
根据题意画出图形,连接AO并延长交BC于点D,则AD⊥BC,设OD=x,由三角形重心的性质得AD=3x, 利用锐角三角函数表示出BD的长,由垂径定理表示出BC的长,然后根据面积法解答即可.
【详解】
如图,
连接AO并延长交BC于点D,则AD⊥BC,
设OD=x,则AD=3x,
∵tan∠BAD=,
∴BD= tan30°·AD=x,
∴BC=2BD=2x,
∵ ,
∴×2x×3x=3,
∴x=1
所以该圆的内接正三边形的边心距为1,
故选B.
【点睛】
本题考查正多边形和圆,三角形重心的性质,垂径定理,锐角三角函数,面积法求线段的长,解答本题的关键是明确题意,求出相应的图形的边心距.
12、D
【解析】
根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断.
【详解】
﹣π<﹣<0<1.
则最小的数是﹣π.
故选:D.
【点睛】
本题考查了实数大小的比较,理解任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
先求出OA的长度,然后利用含30°的直角三角形的性质得到点D的坐标,探索规律,从而得到的坐标即可.
【详解】
分别过点 作y轴的垂线交y轴于点,
∵点B在上
设
∴
同理, 都是含30°的直角三角形
∵,
∴
同理,点 的横坐标为
纵坐标为
故点的坐标为
故答案为:;.
【点睛】
本题主要考查含30°的直角三角形的性质,找到点的坐标规律是解题的关键.
14、0.1
【解析】
根据表格中的数据,随着实验次数的增大,频率逐渐稳定在0.1左右,即为摸出白球的概率.
【详解】
解:观察表格得:通过多次摸球实验后发现其中摸到白球的频率稳定在0.1左右,
则P白球=0.1.
故答案为0.1.
【点睛】
本题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.
15、1
【解析】
过点D作于点H,根等腰三角形的性质求得BD的长度,继而得到,结合三角形中位线定理求得EF的长度即可.
【详解】
解:如图,过点D作于点H,
过点D作于点H,,
.
又平行线间的距离是8,点D是AB的中点,
,
在直角中,由勾股定理知,.
点D是AB的中点,
.
又点E、F分别是AC、BC的中点,
是的中位线,
.
故答案是:1.
【点睛】
考查了三角形中位线定理和平行线的性质,解题的关键是根据平行线的性质求得DH的长度.
16、15或255°
【解析】
如下图,设直线DC′与AB相交于点E,
∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,
∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AB=AC,
∴AE=AD,
又∵AD=AB,AC′=AC,
∴AE=AB=AC=AC′,
∴∠C′=30°,
∴∠EAC′=60°,
∴∠CAC′=60°-45°=15°, 即当DC′∥BC时,旋转角=15°;
同理,当DC′′∥BC时,旋转角=180°-45°-60°=255°;
综上所述,当旋转角=15°或255°时,DC′//BC.
故答案为:15°或255°.
17、2
【解析】
先求出19行有多少个数,再加3就等于第20行第三个数是多少.然后根据奇偶性来决定负正.
【详解】
∵1行1个数,
2行3个数,
3行5个数,
4行7个数,
…
19行应有2×19-1=37个数
∴到第19行一共有
1+3+5+7+9+…+37=19×19=1.
第20行第3个数的绝对值是1+3=2.
又2是偶数,
故第20行第3个数是2.
18、x≤1且x≠﹣1.
【解析】
根据二次根式有意义,分式有意义得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.
故答案为x≤1且x≠﹣1.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1)50名;(2)补图见解析;(3) 刚好抽到同性别学生的概率是
【解析】
试题分析:(1)由题意可得本次调查的学生共有:15÷30%;
(2)先求出C的人数,再求出C的百分比即可;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到同性别学生的情况,再利用概率公式即可求得答案.
试题解析:(1)根据题意得: 15÷30%=50(名).
答;在这项调查中,共调查了50名学生;
(2)图如下:
(3)用A表示男生,B表示女生,画图如下:
共有20种情况,同性别学生的情况是8种,
则刚好抽到同性别学生的概率是.
20、(1)15人;(2)补图见解析.(3).
【解析】
(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;
(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;
(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.
【详解】
解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;
(2)A2的人数为15﹣2﹣6﹣4=3(人)
补全图形,如图所示,
A1所在圆心角度数为:×360°=48°;
(3)画出树状图如下:
共6种等可能结果,符合题意的有3种
∴选出一名男生一名女生的概率为:P=.
【点睛】
本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.
21、(1);(2)
【解析】
(1)利用概率公式直接计算即可;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.
【详解】
(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,
∴小明选择去白鹿原游玩的概率=;
(2)画树状图分析如下:
两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,
所以小明和小华都选择去秦岭国家植物园游玩的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
22、(1)24.2米(2) 超速,理由见解析
【解析】
(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.
(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.
【详解】
解:(1)由題意得,
在Rt△ADC中,,
在Rt△BDC中,,
∴AB=AD-BD=(米).
(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),
∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.
∵43.56千米/小时大于40千米/小时,
∴此校车在AB路段超速.
23、(1)50;(2)108°;(3).
【解析】
分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案.
本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.
(2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=.
点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
24、
【解析】
先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解后约分即可.
【详解】
原式=,
=,
=,
=.
【点睛】
本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.
25、(1)=; (2).
【解析】
(1)根据题意可知,,,,
,…由此得出第n个等式:an=;
(2)将每一个等式化简即可求得答案.
【详解】
解:(1)∵第1个等式:,
第2个等式:,
第3个等式:,
第4个等式:,
∴第n个等式:an=;
(2)a1+a2+a3+…+an
=(
=.
故答案为;.
【点睛】
此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.
26、(1)见解析;(2)菱形
【解析】
试题分析:(1)由切线的性质得到∠OBP=90°,进而得到∠BOP=60°,由OC=BO,得到∠OBC=∠OCB=30°,由等角对等边即可得到结论;
(2)由对角线互相垂直平分的四边形是菱形证明即可.
试题解析:证明:(1)∵PB是⊙O的切线,∴∠OBP=90°,∠POB=90°-30°=60°.∵OB=OC,∴∠OBC=∠OCB.∵∠POB=∠OBC+∠OCB,∴∠OCB=30°=∠P,∴PB=BC;
(2)连接OD交BC于点M.∵D是弧BC的中点,∴OD垂直平分BC.
在直角△OMC中,∵∠OCM=30°,∴OC=2OM=OD,∴OM=DM,∴四边形BOCD是菱形.
27、33.3
【解析】
根据解直角三角形的知识先求出AC的值,再根据矩形的面积计算方法求解即可.
【详解】
解:∵AC= ===
∴矩形面积=10≈33.3(平方米)
答:覆盖在顶上的塑料薄膜需33.3平方米
【点睛】
本题考查了解直角三角形的应用,掌握正弦的定义是解题的关键.
河北保定市博野县重点达标名校2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份河北保定市博野县重点达标名校2021-2022学年中考数学考试模拟冲刺卷含解析,共15页。试卷主要包含了考生要认真填写考场号和座位序号,已知,,且,则的值为,若关于x的一元二次方程x,化简的结果是等内容,欢迎下载使用。
2022年徐州市重点名校中考数学考试模拟冲刺卷含解析: 这是一份2022年徐州市重点名校中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了如图等内容,欢迎下载使用。
2022年成都市青羊区重点名校中考数学考试模拟冲刺卷含解析: 这是一份2022年成都市青羊区重点名校中考数学考试模拟冲刺卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,﹣2018的绝对值是,估算的值是在,下列计算正确的是等内容,欢迎下载使用。