河北省秦皇岛市卢龙县重点达标名校2021-2022学年中考数学最后冲刺模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.在0,π,﹣3,0.6,这5个实数中,无理数的个数为( )
A.1个 B.2个 C.3个 D.4个
2.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是( )
A.0.1 B.0.2
C.0.3 D.0.4
3.将不等式组的解集在数轴上表示,下列表示中正确的是( )
A. B. C. D.
4.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是( )
A.13;13 B.14;10 C.14;13 D.13;14
5.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是( )
A.0.2 B.0.25 C.0.4 D.0.5
6.已知二次函数的图象如图所示,则下列结论:①ac>0;②a-b+c<0; 当时,;,其中错误的结论有
A.②③ B.②④ C.①③ D.①④
7.某种超薄气球表面的厚度约为,这个数用科学记数法表示为( )
A. B. C. D.
8.若分式 有意义,则x的取值范围是
A.x>1 B.x<1 C.x≠1 D.x≠0
9.下列函数中,y随着x的增大而减小的是( )
A.y=3x B.y=﹣3x C. D.
10.如图,半径为的中,弦,所对的圆心角分别是,,若,,则弦的长等于( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知DE⊥EA,斜坡CD的长度为30m,DE的长为15m,则树AB的高度是_____m.
12.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为 .
13.不等式≥-1的正整数解为________________.
14.将直尺和直角三角尺按如图方式摆放.若,,则________.
15.一次函数 y=kx+b 的图像如图所示,则当kx+b>0 时,x 的取值范围为___________.
16.如图,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论:①MF=MC;②AH⊥EF;③AP2=PM•PH; ④EF的最小值是.其中正确的是________.(把你认为正确结论的序号都填上)
17.已知,则______
三、解答题(共7小题,满分69分)
18.(10分)我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有______人,扇形统计图中“了解”部分所对应扇形的圆心角为______°.
(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为_______人.
(3)若从对校园安全知识达到“了解”程度的3个女生A、B、C和2个男生M、N中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A的概率.
19.(5分)如图1,在四边形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转90°得到PQ.
(1)如图2,过A点,D点作BC的垂线,垂足分别为M,N,求sinB的值;
(2)若P是AB的中点,求点E所经过的路径弧EQ的长(结果保留π);
(3)若点Q落在AB或AD边所在直线上,请直接写出BP的长.
20.(8分)如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.
(1)求证:DB平分∠ADC;
(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半径.
21.(10分)如图1,在四边形ABCD中,AB=AD.∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.
图1 图2 图3
(1)思路梳理
将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线. 易证△AFG ,故EF,BE,DF之间的数量关系为 ;
(2)类比引申
如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC的延长线上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°. 若BD=1,EC=2,则DE的长为 .
22.(10分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.
(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;
(2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.
23.(12分)计算:|﹣1|+(﹣1)2018﹣tan60°
24.(14分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.
(1)求证:△PFA∽△ABE;
(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;
(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件: .
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
分别根据无理数、有理数的定义逐一判断即可得.
【详解】
解:在0,π,-3,0.6,这5个实数中,无理数有π、这2个,
故选B.
【点睛】
此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.
2、B
【解析】
∵在5.5~6.5组别的频数是8,总数是40,
∴=0.1.
故选B.
3、B
【解析】
先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.
解:不等式可化为:,即.
∴在数轴上可表示为.故选B.
“点睛”不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
4、C
【解析】
根据统计图,利用众数与中位数的概念即可得出答案.
【详解】
从统计图中可以得出这一周的气温分别是:12,15,14,10,13,14,11
所以众数为14;
将气温按从低到高的顺序排列为:10,11,12,13,14,14,15
所以中位数为13
故选:C.
【点睛】
本题主要考查中位数和众数,掌握中位数和众数的求法是解题的关键.
5、B
【解析】
设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.
【详解】
解:设大正方形边长为2,则小正方形边长为1,
因为面积比是相似比的平方,
所以大正方形面积为4,小正方形面积为1,
则针孔扎到小正方形(阴影部分)的概率是;
故选:B.
【点睛】
本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
6、C
【解析】
①根据图象的开口方向,可得a的范围,根据图象与y轴的交点,可得c的范围,根据有理数的乘法,可得答案;
②根据自变量为-1时函数值,可得答案;
③根据观察函数图象的纵坐标,可得答案;
④根据对称轴,整理可得答案.
【详解】
图象开口向下,得a<0,
图象与y轴的交点在x轴的上方,得c>0,ac<,故①错误;
②由图象,得x=-1时,y<0,即a-b+c<0,故②正确;
③由图象,得
图象与y轴的交点在x轴的上方,即当x<0时,y有大于零的部分,故③错误;
④由对称轴,得x=-=1,解得b=-2a,
2a+b=0
故④正确;
故选D.
【点睛】
考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
7、A
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
,
故选:A.
【点睛】
本题考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
8、C
【解析】
分式分母不为0,所以,解得.
故选:C.
9、B
【解析】
试题分析:A、y=3x,y随着x的增大而增大,故此选项错误;
B、y=﹣3x,y随着x的增大而减小,正确;
C、,每个象限内,y随着x的增大而减小,故此选项错误;
D、,每个象限内,y随着x的增大而增大,故此选项错误;
故选B.
考点:反比例函数的性质;正比例函数的性质.
10、A
【解析】
作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=BF=1,从而求解.
解:作AH⊥BC于H,作直径CF,连结BF,如图,
∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,
∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,
∵AH⊥BC,∴CH=BH,
∵CA=AF,∴AH为△CBF的中位线,∴AH=BF=1.
∴,
∴BC=2BH=2.
故选A.
“点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
先根据CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由锐角三角函数的定义即可得出结论.
【详解】
解:作DF⊥AB于F,交BC于G.则四边形DEAF是矩形,
∴DE=AF=15m,
∵DF∥AE,
∴∠BGF=∠BCA=60°,
∵∠BGF=∠GDB+∠GBD=60°,∠GDB=30°,
∴∠GDB=∠GBD=30°,
∴GD=GB,
在Rt△DCE中,∵CD=2DE,
∴∠DCE=30°,
∴∠DCB=90°,
∵∠DGC=∠BGF,∠DCG=∠BFG=90°
∴△DGC≌△BGF,
∴BF=DC=30m,
∴AB=30+15=1(m),
故答案为1.
【点睛】
本题考查的是解直角三角形的应用-仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.
12、1
【解析】
设反比例函数解析式为y=,根据反比例函数图象上点的坐标特征得到k=3×(﹣4)=﹣2m,然后解关于m的方程即可.
【详解】
解:设反比例函数解析式为y=,
根据题意得k=3×(﹣4)=﹣2m,
解得m=1.
故答案为1.
考点:反比例函数图象上点的坐标特征.
13、1, 2, 1.
【解析】
去分母,移项,合并同类项,系数化成1即可求出不等式的解集,根据不等式的解集即可求出答案.
【详解】
,
∴1-x≥-2,
∴-x≥-1,
∴x≤1,
∴不等式的正整数解是1,2,1,
故答案为:1,2,1.
【点睛】
本题考查了解一元一次不等式和一元一次不等式的整数解,关键是求出不等式的解集.
14、80°.
【解析】
由于直尺外形是矩形,根据矩形的性质可知对边平行,所以∠4=∠3,再根据外角的性质即可求出结果.
【详解】
解:如图所示,依题意得:∠4=∠3,
∵∠4=∠2+∠1=80°
∴∠3=80°.
故答案为80°.
【点睛】
本题考查了平行线的性质和三角形外角的性质,掌握三角形外角的性质是解题的关键.
15、x>1
【解析】
分析:题目要求 kx+b>0,即一次函数的图像在x 轴上方时,观察图象即可得x的取值范围.
详解:
∵kx+b>0,
∴一次函数的图像在x 轴上方时,
∴x的取值范围为:x>1.
故答案为x>1.
点睛:本题考查了一次函数与一元一次不等式的关系,主要考查学生的观察视图能力.
16、②③④
【解析】
①可用特殊值法证明,当为的中点时,,可见.
②可连接,交于点,先根据证明,得到,根据矩形的性质可得,故,又因为,故,故.
③先证明,得到,再根据,得到,代换可得.
④根据,可知当取最小值时,也取最小值,根据点到直线的距离也就是垂线段最短可得,当时,取最小值,再通过计算可得.
【详解】
解:
①错误.当为的中点时,,可见;
②正确.
如图,连接,交于点,
,
,,,
四边形为矩形,
,
,
,
,
,
,
.
③正确.
,
,
,
,
,
又,
,
,
,
,
.
④正确.
且四边形为矩形,
,
当时,取最小值,
此时,
故的最小值为.
故答案为:②③④.
【点睛】
本题是动点问题,综合考查了矩形、正方形的性质,全等三角形与相似三角形的性质与判定,线段的最值问题等,合理作出辅助线,熟练掌握各个相关知识点是解答关键.
17、34
【解析】
∵,∴=,
故答案为34.
三、解答题(共7小题,满分69分)
18、(1)60,30;;(2)300;(3)
【解析】
(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;
(2)利用样本估计总体的方法,即可求得答案;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到女生A的情况,再利用概率公式求解即可求得答案.
【详解】
解:(1)∵了解很少的有30人,占50%,
∴接受问卷调查的学生共有:30÷50%=60(人);
∵了解部分的人数为60﹣(15+30+10)=5,
∴扇形统计图中“了解”部分所对应扇形的圆心角为:×360°=30°;
故答案为60,30;
(2)根据题意得:900×=300(人),
则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人,
故答案为300;
(3)画树状图如下:
所有等可能的情况有6种,其中抽到女生A的情况有2种,
所以P(抽到女生A)==.
【点睛】
此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.
19、(1) ;(2)5π;(3)PB的值为或.
【解析】
(1)如图1中,作AM⊥CB用M,DN⊥BC于N,根据题意易证Rt△ABM≌Rt△DCN,再根据全等三角形的性质可得出对应边相等,根据勾股定理可求出AM的值,即可得出结论;
(2)连接AC,根据勾股定理求出AC的长,再根据弧长计算公式即可得出结论;
(3)当点Q落在直线AB上时,根据相似三角形的性质可得对应边成比例,即可求出PB的值;当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G,设PB=x,则AP=13﹣x,再根据全等三角形的性质可得对应边相等,即可求出PB的值.
【详解】
解:(1)如图1中,作AM⊥CB用M,DN⊥BC于N.
∴∠DNM=∠AMN=90°,
∵AD∥BC,
∴∠DAM=∠AMN=∠DNM=90°,
∴四边形AMND是矩形,
∴AM=DN,
∵AB=CD=13,
∴Rt△ABM≌Rt△DCN,
∴BM=CN,
∵AD=11,BC=21,
∴BM=CN=5,
∴AM==12,
在Rt△ABM中,sinB==.
(2)如图2中,连接AC.
在Rt△ACM中,AC===20,
∵PB=PA,BE=EC,
∴PE=AC=10,
∴的长==5π.
(3)如图3中,当点Q落在直线AB上时,
∵△EPB∽△AMB,
∴==,
∴==,
∴PB=.
如图4中,当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G.
设PB=x,则AP=13﹣x.
∵AD∥BC,
∴∠B=∠HAP,
∴PG=x,PH=(13﹣x),
∴BG=x,
∵△PGE≌△QHP,
∴EG=PH,
∴﹣x=(13﹣x),
∴BP=.
综上所述,满足条件的PB的值为或.
【点睛】
本题考查了相似三角形与全等三角形的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质.
20、(1)详见解析;(2)OA=.
【解析】
(1)连接OB,证明∠ABE=∠ADB,可得∠ABE=∠BDC,则∠ADB=∠BDC;
(2)证明△AEB∽△CBD,AB=x,则BD=2x,可求出AB,则答案可求出.
【详解】
(1)证明:连接OB,
∵BE为⊙O的切线,
∴OB⊥BE,
∴∠OBE=90°,
∴∠ABE+∠OBA=90°,
∵OA=OB,
∴∠OBA=∠OAB,
∴∠ABE+∠OAB=90°,
∵AD是⊙O的直径,
∴∠OAB+∠ADB=90°,
∴∠ABE=∠ADB,
∵四边形ABCD的外接圆为⊙O,
∴∠EAB=∠C,
∵∠E=∠DBC,
∴∠ABE=∠BDC,
∴∠ADB=∠BDC,
即DB平分∠ADC;
(2)解:∵tan∠ABE=,
∴设AB=x,则BD=2x,
∴,
∵∠BAE=∠C,∠ABE=∠BDC,
∴△AEB∽△CBD,
∴,
∴,
解得x=3,
∴AB=x=15,
∴OA=.
【点睛】
本题考查切线的性质、解直角三角形、勾股定理等知识,解题的关键是学会添加常用辅助线解决问题.
21、(1)△AFE. EF=BE+DF.(2)BF=DF-BE,理由见解析;(3)
【解析】
试题分析:(1)先根据旋转得:计算 即点共线,再根据SAS证明△AFE≌△AFG,得EF=FG,可得结论EF=DF+DG=DF+AE;
(2)如图2,同理作辅助线:把△ABE绕点A逆时针旋转至△ADG,证明△EAF≌△GAF,得EF=FG,所以EF=DF−DG=DF−BE;
(3)如图3,同理作辅助线:把△ABD绕点A逆时针旋转至△ACG,证明△AED≌△AEG,得,先由勾股定理求的长,从而得结论.
试题解析:(1)思路梳理:
如图1,把△ABE绕点A逆时针旋转至△ADG,可使AB与AD重合,即AB=AD,
由旋转得:∠ADG=∠A=,BE=DG,∠DAG=∠BAE,AE=AG,
∴∠FDG=∠ADF+∠ADG=+=,
即点F. D. G共线,
∵四边形ABCD为矩形,
∴∠BAD=,
∵∠EAF=,
∴
∴
∴
在△AFE和△AFG中,
∵
∴△AFE≌△AFG(SAS),
∴EF=FG,
∴EF=DF+DG=DF+AE;
故答案为:△AFE,EF=DF+AE;
(2)类比引申:
如图2,EF=DF−BE,理由是:
把△ABE绕点A逆时针旋转至△ADG,可使AB与AD重合,则G在DC上,
由旋转得:BE=DG,∠DAG=∠BAE,AE=AG,
∵∠BAD=,
∴∠BAE+∠BAG=,
∵∠EAF=,
∴∠FAG=−=,
∴∠EAF=∠FAG=,
在△EAF和△GAF中,
∵
∴△EAF≌△GAF(SAS),
∴EF=FG,
∴EF=DF−DG=DF−BE;
(3)联想拓展:
如图3,把△ABD绕点A逆时针旋转至△ACG,可使AB与AC重合,连接EG,
由旋转得:AD=AG,∠BAD=∠CAG,BD=CG,
∵∠BAC=,AB=AC,
∴∠B=∠ACB=,
∴∠ACG=∠B=,
∴∠BCG=∠ACB+∠ACG=+=,
∵EC=2,CG=BD=1,
由勾股定理得:
∵∠BAD=∠CAG,∠BAC=,
∴∠DAG=,
∵∠BAD+∠EAC=,
∴∠CAG+∠EAC==∠EAG,
∴∠DAE=,
∴∠DAE=∠EAG=,
∵AE=AE,
∴△AED≌△AEG,
∴
22、(1) (2)证明见解析
【解析】
(1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题.
(2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.
【详解】
解:如图 1 中,在 AB 上取一点 M,使得 BM=ME,连接 ME.
在 Rt△ABE 中,∵OB=OE,
∴BE=2OA=2,
∵MB=ME,
∴∠MBE=∠MEB=15°,
∴∠AME=∠MBE+∠MEB=30°,设 AE=x,则 ME=BM=2x,AM=x,
∵AB2+AE2=BE2,
∴,
∴x= (负根已经舍弃),
∴AB=AC=(2+ )• ,
∴BC= AB= +1.
作 CQ⊥AC,交 AF 的延长线于 Q,
∵ AD=AE ,AB=AC ,∠BAE=∠CAD,
∴△ABE≌△ACD(SAS),
∴∠ABE=∠ACD,
∵∠BAC=90°,FG⊥CD,
∴∠AEB=∠CMF,
∴∠GEM=∠GME,
∴EG=MG,
∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,
∴△ABE≌△CAQ(ASA),
∴BE=AQ,∠AEB=∠Q,
∴∠CMF=∠Q,
∵∠MCF=∠QCF=45°,CF=CF,
∴△CMF≌△CQF(AAS),
∴FM=FQ,
∴BE=AQ=AF+FQ=AF=FM,
∵EG=MG,
∴BG=BE+EG=AF+FM+MG=AF+FG.
【点睛】
本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
23、1
【解析】
原式利用绝对值的代数意义,乘方的意义,以及特殊角的三角函数值计算即可求出值.
【详解】
|﹣1|+(﹣1)2118﹣tan61°
=﹣1+1﹣
=1.
【点睛】
本题考查了实数的运算,涉及了绝对值化简、特殊角的三角函数值,熟练掌握各运算的运算法则是解题的关键.
24、(1)证明见解析;(2)3或.(3)或0<
【解析】
(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;
(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当 时,则得到四边形为矩形,从而求得的值;当时,再结合(1)中的结论,得到等腰.再根据等腰三角形的三线合一得到是的中点,运用勾股定理和相似三角形的性质进行求解.
(3)此题首先应针对点的位置分为两种大情况:①与AE相切,② 与线段只有一个公共点,不一定必须相切,只要保证和线段只有一个公共点即可.故求得相切时的情况和相交,但其中一个交点在线段外的情况即是的取值范围.
【详解】
(1)证明:∵矩形ABCD,
∴AD∥BC.
∴∠PAF=∠AEB.
又∵PF⊥AE,
∴△PFA∽△ABE.
(2)情况1,当△EFP∽△ABE,且∠PEF=∠EAB时,
则有PE∥AB
∴四边形ABEP为矩形,
∴PA=EB=3,即x=3.
情况2,当△PFE∽△ABE,且∠PEF=∠AEB时,
∵∠PAF=∠AEB,
∴∠PEF=∠PAF.
∴PE=PA.
∵PF⊥AE,
∴点F为AE的中点,
即
∴满足条件的x的值为3或
(3) 或
【点睛】
两组角对应相等,两三角形相似.
河南省固始县重点达标名校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份河南省固始县重点达标名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共22页。
河北省秦皇岛市卢龙县重点达标名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份河北省秦皇岛市卢龙县重点达标名校2021-2022学年中考数学模拟精编试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,化简÷的结果是,下列运算正确的是,下列说法中不正确的是等内容,欢迎下载使用。
河北省丰润区重点名校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份河北省丰润区重点名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,实数﹣5.22的绝对值是,如果将直线l1等内容,欢迎下载使用。