贵州省兴仁县2021-2022学年中考试题猜想数学试卷含解析
展开
这是一份贵州省兴仁县2021-2022学年中考试题猜想数学试卷含解析,共17页。试卷主要包含了函数y=自变量x的取值范围是,对于一组统计数据等内容,欢迎下载使用。
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x本画册,列方程正确的是( )
A.B.
C.D.
2.对于下列调查:①对从某国进口的香蕉进行检验检疫;②审查某教科书稿;③中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )
A.①② B.①③ C.②③ D.①②③
3.如图,已知线段AB,分别以A,B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至点M,则∠BCM的度数为( )
A.40°B.50°C.60°D.70°
4.某区10名学生参加市级汉字听写大赛,他们得分情况如上表:那么这10名学生所得分数的平均数和众数分别是( )
A.85和82.5B.85.5和85C.85和85D.85.5和80
5.函数y=自变量x的取值范围是( )
A.x≥1B.x≥1且x≠3C.x≠3D.1≤x≤3
6.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )
A.平均数是3B.中位数是3C.众数是3D.方差是2.5
7.如图,在中, ,以边的中点为圆心,作半圆与相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是( )
A.B.C.D.
8.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为( )
A.30°B.35°C.40°D.50°
9.如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移5个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为( )
A.(3,3)B.(4,3)C.(﹣1,3)D.(3,4)
10.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是( )
A.AB=DEB.DF∥ACC.∠E=∠ABCD.AB∥DE
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在矩形ABCD中,AB=2,AD=6,E.F分别是线段AD,BC上的点,连接EF,使四边形ABFE为正方形,若点G是AD上的动点,连接FG,将矩形沿FG折叠使得点C落在正方形ABFE的对角线所在的直线上,对应点为P,则线段AP的长为______.
12.计算:(π﹣3)0﹣2-1=_____.
13.如图,矩形ABCD中,E为BC的中点,将△ABE沿直线AE折叠时点B落在点F处,连接FC,若∠DAF=18°,则∠DCF=_____度.
14.若一个多边形每个内角为140°,则这个多边形的边数是________.
15.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.
16.如图,中,AC=3,BC=4,,P为AB上一点,且AP=2BP,若点A绕点C顺时针旋转60°,则点P随之运动的路径长是_________
三、解答题(共8题,共72分)
17.(8分)计算:(﹣1)2018﹣2+|1﹣|+3tan30°.
18.(8分)(1)计算: ;
(2)解不等式组 :
19.(8分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有
“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.
(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.
利用图中所提供的信息解决以下问题:
①小明一共统计了 个评价;
②请将图1补充完整;
③图2中“差评”所占的百分比是 ;
(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.
20.(8分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
(1)请估计:当n很大时,摸到白球的频率将会接近 ;(精确到0.1)假如你摸一次,你摸到白球的概率P(白球)= ;试估算盒子里黑、白两种颜色的球各有多少只?
21.(8分)如果a2+2a-1=0,求代数式的值.
22.(10分)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.
23.(12分)x取哪些整数值时,不等式5x+2>3(x-1)与x≤2-x都成立?
24.某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:
②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
(1)求出第10天日销售量;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
分析:由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.
详解:设他上月买了x本笔记本,则这次买了(x+20)本,
根据题意得:.
故选A.
点睛:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可.
2、B
【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
①对从某国进口的香蕉进行检验检疫适合抽样调查;
②审查某教科书稿适合全面调查;
③中央电视台“鸡年春晚”收视率适合抽样调查.
故选B.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、B
【解析】
解:∵由作法可知直线l是线段AB的垂直平分线,
∴AC=BC,
∴∠CAB=∠CBA=25°,
∴∠BCM=∠CAB+∠CBA=25°+25°=50°.
故选B.
4、B
【解析】
根据众数及平均数的定义,即可得出答案.
【详解】
解:这组数据中85出现的次数最多,故众数是85;平均数= (80×3+85×4+90×2+95×1)=85.5.
故选:B.
【点睛】
本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.
5、B
【解析】
由题意得,
x-1≥0且x-3≠0,
∴x≥1且x≠3.
故选B.
6、D
【解析】
根据平均数、中位数、众数和方差的定义逐一求解可得.
【详解】
解:A、平均数为=3,正确;
B、重新排列为1、2、3、3、6,则中位数为3,正确;
C、众数为3,正确;
D、方差为×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,错误;
故选:D.
【点睛】
本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
7、C
【解析】
如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.
【详解】
解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,
此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,
∵AB=10,AC=8,BC=6,
∴AB2=AC2+BC2,
∴∠C=10°,
∵∠OP1B=10°,
∴OP1∥AC
∵AO=OB,\
∴P1C=P1B,
∴OP1=AC=4,
∴P1Q1最小值为OP1-OQ1=1,
如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,
P2Q2最大值=5+3=8,
∴PQ长的最大值与最小值的和是1.
故选:C.
【点睛】
本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.
8、A
【解析】
根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解
【详解】
∵CC′∥AB,∠CAB=75°,
∴∠C′CA=∠CAB=75°,
又∵C、C′为对应点,点A为旋转中心,
∴AC=AC′,即△ACC′为等腰三角形,
∴∠CAC′=180°﹣2∠C′CA=30°.
故选A.
【点睛】
此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键
9、B
【解析】
令x=0,y=6,∴B(0,6),
∵等腰△OBC,∴点C在线段OB的垂直平分线上,
∴设C(a,3),则C '(a-5,3),
∴3=3(a-5)+6,解得a=4,
∴C(4,3).
故选B.
点睛:掌握等腰三角形的性质、函数图像的平移.
10、A
【解析】
由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.
【详解】
∵EB=CF,
∴EB+BF=CF+BF,即EF=BC,
又∵∠A=∠D,
A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.
B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.
C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.
D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误,
故选A.
【点睛】
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1或1﹣2
【解析】
当点P在AF上时,由翻折的性质可求得PF=FC=1,然后再求得正方形的对角线AF的长,从而可得到PA的长;当点P在BE上时,由正方形的性质可知BP为AF的垂直平分线,则AP=PF,由翻折的性质可求得PF=FC=1,故此可得到AP的值.
【详解】
解:如图1所示:
由翻折的性质可知PF=CF=1,
∵ABFE为正方形,边长为2,
∴AF=2.
∴PA=1﹣2.
如图2所示:
由翻折的性质可知PF=FC=1.
∵ABFE为正方形,
∴BE为AF的垂直平分线.
∴AP=PF=1.
故答案为:1或1﹣2.
【点睛】
本题主要考查的是翻折的性质、正方形的性质的应用,根据题意画出符合题意的图形是解题的关键.
12、
【解析】
分别利用零指数幂a0=1(a≠0),负指数幂a-p=(a≠0)化简计算即可.
【详解】
解:(π﹣3)0﹣2-1=1-=.
故答案为:.
【点睛】
本题考查了零指数幂和负整数指数幂的运算,掌握运算法则是解题关键.
13、1 .
【解析】
由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,求出∠BAE=∠FAE=1°,由直角三角形的性质得出∠AEF=∠AEB=54°,求出∠CEF=72°,求出FE=CE,由等腰三角形的性质求出∠ECF=54°,即可得出∠DCF的度数.
【详解】
解:∵四边形ABCD是矩形,
∴∠BAD=∠B=∠BCD=90°,
由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,
∵∠DAF=18°,
∴∠BAE=∠FAE=×(90°﹣18°)=1°,
∴∠AEF=∠AEB=90°﹣1°=54°,
∴∠CEF=180°﹣2×54°=72°,
∵E为BC的中点,
∴BE=CE,
∴FE=CE,
∴∠ECF=×(180°﹣72°)=54°,
∴∠DCF=90°﹣∠ECF=1°.
故答案为1.
【点睛】
本题考查了矩形的性质、折叠变换的性质、直角三角形的性质、等腰三角形的性质、三角形内角和定理等知识点,求出∠ECF的度数是解题的关键.
14、九
【解析】
根据多边形的内角和定理:180°•(n-2)进行求解即可.
【详解】
由题意可得:180°(n−2)=140°n,
解得n=9,
故多边形是九边形.
故答案为9.
【点睛】
本题考查了多边形的内角和定理,解题的关键是熟练的掌握多边形的内角和定理.
15、15
【解析】
分析:设输出结果为y,观察图形我们可以得出x和y的关系式为:,将y的值代入即可求得x的值.
详解:∵
当y=127时, 解得:x=43;
当y=43时,解得:x=15;
当y=15时, 解得 不符合条件.
则输入的最小正整数是15.
故答案为15.
点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.
16、
【解析】
作PD⊥BC,则点P运动的路径长是以点D为圆心,以PD为半径,圆心角为60°的一段圆弧,根据相似三角形的判定与性质求出PD的长,然后根据弧长公式求解即可.
【详解】
作PD⊥BC,则PD∥AC,
∴△PBD~△ABC,
∴ .
∵AC=3,BC=4,
∴AB=,
∵AP=2BP,
∴BP=,
∴,
∴点P运动的路径长=.
故答案为:.
【点睛】
本题考查了相似三角形的判定与性质,弧长的计算,根据相似三角形的判定与性质求出PD的长是解答本题的关键.
三、解答题(共8题,共72分)
17、﹣6+2
【解析】
分析:直接利用二次根式的性质以及绝对值的性质和特殊角的三角函数值分别化简求出答案.
详解:原式=1﹣6+﹣1+3×
=﹣5+﹣1+
=﹣6+2.
点睛:此题主要考查了实数运算,正确化简各数是解题关键.
18、(1);(2).
【解析】
(1)根据幂的运算与实数的运算性质计算即可.
(2)先整理为最简形式,再解每一个不等式,最后求其解集.
【详解】
(1)解:原式=
=
(2)解不等式①,得 .
解不等式②,得 .
∴ 原不等式组的解集为
【点睛】
本题考查了实数的混合运算和解一元一次不等式组,熟练掌握和运用相关运算性质是解答关键.
19、(1)①150;②作图见解析;③13.3%;(2).
【解析】
(1)①用“中评”、“差评”的人数除以二者的百分比之和即可得总人数;②用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;③根据“差评”的人数÷总人数×100%即可得“差评”所占的百分比;
(2)可通过列表表示出甲、乙对商品评价的所有可能结果数,根据概率公式即可计算出两人中至少有一个给“好评”的概率.
【详解】
①小明统计的评价一共有:(40+20)÷(1-60%=150(个);
②“好评”一共有150×60%=90(个),补全条形图如图1:
③图2中“差评”所占的百分比是:×100%=13.3%;
(2)列表如下:
由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,
∴两人中至少有一个给“好评”的概率是.
考点:扇形统计图;条形统计图;列表法与树状图法.
20、(1)0.6;(2)0.6;(3)白球有24只,黑球有16只.
【解析】
试题分析:通过题意和表格,可知摸到白球的概率都接近与0.6,因此摸到白球的概率估计值为0.6.
21、1
【解析】
==1.
故答案为1.
22、见解析
【解析】
根据条件可以得出AD=AB,∠ABF=∠ADE=90°,从而可以得出△ABF≌△ADE,就可以得出∠FAB=∠EAD,就可以得出结论.
【详解】
证明:∵四边形ABCD是正方形,
∴AB=AD,∠ABC=∠D=∠BAD=90°,
∴∠ABF=90°.
∵在△BAF和△DAE中,
,
∴△BAF≌△DAE(SAS),
∴∠FAB=∠EAD,
∵∠EAD+∠BAE=90°,
∴∠FAB+∠BAE=90°,
∴∠FAE=90°,
∴EA⊥AF.
23、-2,-1,0,1
【解析】
解不等式5x+2>3(x-1)得:得x>-2.5;
解不等式x≤2-x得x≤1.则这两个不等式解集的公共部分为 ,
因为x取整数,则x取-2,-1,0,1.
故答案为-2,-1,0,1
【点睛】
本题考查了求不等式组的整数解,先求出每个不等式的解集,再求出它们的公共部分,最后确定公共的整数解(包括正整数,0,负整数).
24、(1)1件;(2)第40天,利润最大7200元;(3)46天
【解析】
试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;
(2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;
(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.
试题解析:解:(1)∵n与x成一次函数,∴设n=kx+b,将x=1,m=198,x=3,m=194代入,得:, 解得:,
所以n关于x的一次函数表达式为n=-2x+200;
当x=10时,n=-2×10+200=1.
(2)设销售该产品每天利润为y元,y关于x的函数表达式为:
当1≤x<50时,y=-2x2+160x+4000=-2(x-40)2+7200,
∵-2<0,∴当x=40时,y有最大值,最大值是7200;
当50≤x≤90时,y=-120x+12000,
∵-120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;
综上所述:当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;
(3)在该产品销售的过程中,共有46天销售利润不低于5400元.
人数
3
4
2
1
分数
80
85
90
95
摸球的次数n
100
200
300
500
800
1000
3000
摸到白球的次数m
65
124
178
302
481
599
1803
摸到白球的频率
0.65
0.62
0.593
0.604
0.601
0.599
0.601
时间(第x天)
1
2
3
10
…
日销售量(n件)
198
196
194
?
…
时间(第x天)
1≤x<50
50≤x≤90
销售价格(元/件)
x+60
100
好
中
差
好
好,好
好,中
好,差
中
中,好
中,中
中,差
差
差,好
差,中
差,差
相关试卷
这是一份黄山市~2021-2022学年中考试题猜想数学试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,这个数是等内容,欢迎下载使用。
这是一份2022年贵州省黔西南兴仁县中考数学押题卷含解析,共19页。试卷主要包含了在平面直角坐标系中,将点P,关于x的方程=无解,则k的值为等内容,欢迎下载使用。
这是一份2022届贵州省兴仁县黔龙学校中考冲刺卷数学试题含解析,共24页。试卷主要包含了下列各式中计算正确的是,若a+|a|=0,则等于,化简的结果是,计算-5x2-3x2的结果是等内容,欢迎下载使用。