河北省石家庄市桥东区2022年中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为( )
A.7 B. C. D.9
2.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为( )
A.(,2) B.(4,1) C.(4,) D.(4,)
3.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )
A. B. C. D.
4.下列事件是必然事件的是( )
A.任意作一个平行四边形其对角线互相垂直
B.任意作一个矩形其对角线相等
C.任意作一个三角形其内角和为
D.任意作一个菱形其对角线相等且互相垂直平分
5.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是( )
A.AE=6cm B.
C.当0<t≤10时, D.当t=12s时,△PBQ是等腰三角形
6.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是( )
A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>0
7.若分式方程无解,则a的值为( )
A.0 B.-1 C.0或-1 D.1或-1
8.如图是由四个相同的小正方体堆成的物体,它的正视图是( )
A. B. C. D.
9.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )
A. B. C. D.
10.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得( )
A.168(1﹣x)2=108 B.168(1﹣x2)=108
C.168(1﹣2x)=108 D.168(1+x)2=108
11.下列实数中是无理数的是( )
A. B.2﹣2 C.5. D.sin45°
12.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有( )
A.1个 B.3个 C.4个 D.5个
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:
成绩(分)
60
70
80
90
100
人 数
4
8
12
11
5
则该办学生成绩的众数和中位数分别是( )
A.70分,80分 B.80分,80分
C.90分,80分 D.80分,90分
14.方程x-1=的解为:______.
15.如图,角α的一边在x轴上,另一边为射线OP,点P(2,2),则tanα=_____.
16.A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.
17.已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),则ab的值为_____.
18.如图,正方形ABCD的边长为,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB, 垂足为点F,则EF的长是__________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:
本次比赛参赛选手共有 人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为 ;赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.
20.(6分)如图,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中≌,可知,求得______.如图,在矩形的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.
求证:.
若,求的度数.
21.(6分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.
请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?
22.(8分)(1)计算:|﹣3|﹣﹣2sin30°+(﹣)﹣2
(2)化简:.
23.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣2,3),B(﹣4,﹣1), C(2,0).点P(m,n)为△ABC内一点,平移△ABC得到△A1B1C1 ,使点P(m,n)移到P(m+6,n+1)处.
(1)画出△A1B1C1
(2)将△ABC绕坐标点C逆时针旋转90°得到△A2B2C,画出△A2B2C;
(3)在(2)的条件下求BC扫过的面积.
24.(10分)如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上. 填空:∠ABC= °,BC= ;判断△ABC与△DEF是否相似,并证明你的结论.
25.(10分)如图,在平面直角坐标系中,直线经过点和,双曲线经过点B.
(1)求直线和双曲线的函数表达式;
(2)点C从点A出发,沿过点A与y轴平行的直线向下运动,速度为每秒1个单位长度,点C的运动时间为t(0<t<12),连接BC,作BD⊥BC交x轴于点D,连接CD,
①当点C在双曲线上时,求t的值;
②在0<t<6范围内,∠BCD的大小如果发生变化,求tan∠BCD的变化范围;如果不发生变化,求tan∠BCD的值;
③当时,请直接写出t的值.
26.(12分)在数学上,我们把符合一定条件的动点所形成的图形叫做满足该条件的点的轨迹.例如:动点P的坐标满足(m,m﹣1),所有符合该条件的点组成的图象在平面直角坐标系xOy中就是一次函数y=x﹣1的图象.即点P的轨迹就是直线y=x﹣1.
(1)若m、n满足等式mn﹣m=6,则(m,n﹣1)在平面直角坐标系xOy中的轨迹是 ;
(2)若点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,求点P的轨迹;
(3)若抛物线y=上有两动点M、N满足MN=a(a为常数,且a≥4),设线段MN的中点为Q,求点Q到x轴的最短距离.
27.(12分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.求证:△AFE≌△CDF;若AB=4,BC=8,求图中阴影部分的面积.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD=.
【详解】
解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.
∵CD平分∠ACB,
∴∠ACD=∠BCD
∴DF=DG,弧AD=弧BD,
∴DA=DB.
∵∠AFD=∠BGD=90°,
∴△AFD≌△BGD,
∴AF=BG.
易证△CDF≌△CDG,
∴CF=CG.
∵AC=6,BC=8,
∴AF=1,(也可以:设AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)
∴CF=7,
∵△CDF是等腰直角三角形,(这里由CFDG是正方形也可得).
∴CD=.
故选B.
2、D
【解析】
由已知条件得到AD′=AD=4,AO=AB=2,根据勾股定理得到OD′= =2,于是得到结论.
【详解】
解:∵AD′=AD=4,
AO=AB=1,
∴OD′==2,
∵C′D′=4,C′D′∥AB,
∴C′(4,2),
故选:D.
【点睛】
本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键.
3、A
【解析】
【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S△AEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解.
【详解】作直径CG,连接OD、OE、OF、DG.
∵CG是圆的直径,
∴∠CDG=90°,则DG==8,
又∵EF=8,
∴DG=EF,
∴,
∴S扇形ODG=S扇形OEF,
∵AB∥CD∥EF,
∴S△OCD=S△ACD,S△OEF=S△AEF,
∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=π×52=,
故选A.
【点睛】本题考查扇形面积的计算,圆周角定理.本题中找出两个阴影部分面积之间的联系是解题的关键.
4、B
【解析】
必然事件就是一定发生的事件,根据定义对各个选项进行判断即可.
【详解】
解:A、任意作一个平行四边形其对角线互相垂直不一定发生,是随机事件,故本选项错误;
B、矩形的对角线相等,所以任意作一个矩形其对角线相等一定发生,是必然事件,故本选项正确;
C、三角形的内角和为180°,所以任意作一个三角形其内角和为是不可能事件,故本选项错误;
D、任意作一个菱形其对角线相等且互相垂直平分不一定发生,是随机事件,故选项错误,
故选:B.
【点睛】
解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握相关图形的性质也是解题的关键.
5、D
【解析】
(1)结论A正确,理由如下:
解析函数图象可知,BC=10cm,ED=4cm,
故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.
(2)结论B正确,理由如下:
如图,连接EC,过点E作EF⊥BC于点F,
由函数图象可知,BC=BE=10cm,,
∴EF=1.∴.
(3)结论C正确,理由如下:
如图,过点P作PG⊥BQ于点G,
∵BQ=BP=t,∴.
(4)结论D错误,理由如下:
当t=12s时,点Q与点C重合,点P运动到ED的中点,
设为N,如图,连接NB,NC.
此时AN=1,ND=2,由勾股定理求得:NB=,NC=.
∵BC=10,
∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.
故选D.
6、C
【解析】
利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.
【详解】
解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,
∴a+b<1,ab<1,a﹣b<1,a÷b<1.
故选:C.
7、D
【解析】
试题分析:在方程两边同乘(x+1)得:x-a=a(x+1),
整理得:x(1-a)=2a,
当1-a=0时,即a=1,整式方程无解,
当x+1=0,即x=-1时,分式方程无解,
把x=-1代入x(1-a)=2a得:-(1-a)=2a,
解得:a=-1,
故选D.
点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.
8、A
【解析】
【分析】根据正视图是从物体的正面看得到的图形即可得.
【详解】从正面看可得从左往右2列正方形的个数依次为2,1,
如图所示:
故选A.
【点睛】本题考查了三视图的知识,正视图是从物体的正面看得到的视图.
9、B
【解析】
解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;
当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
故选B.
10、A
【解析】
设每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x),第二次后的价格是168(1-x)2,据此即可列方程求解.
【详解】
设每次降价的百分率为x,
根据题意得:168(1-x)2=1.
故选A.
【点睛】
此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.
11、D
【解析】
A、是有理数,故A选项错误;
B、是有理数,故B选项错误;
C、是有理数,故C选项错误;
D、是无限不循环小数,是无理数,故D选项正确;
故选:D.
12、B
【解析】
根据题意和函数的图像,可知抛物线的对称轴为直线x=-=1,即b=-4a,变形为4a+b=0,所以(1)正确;
由x=-3时,y>0,可得9a+3b+c>0,可得9a+c>-3c,故(1)正确;
因为抛物线与x轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a﹣3b+1c=7a+11a-5a=14a,由函数的图像开口向下,可知a<0,因此7a﹣3b+1c<0,故(3)不正确;
根据图像可知当x<1时,y随x增大而增大,当x>1时,y随x增大而减小,可知若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1=y3<y1,故(4)不正确;
根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<x1,故(5)正确.
正确的共有3个.
故选B.
点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b1﹣4ac>0时,抛物线与x轴有1个交点;△=b1﹣4ac=0时,抛物线与x轴有1个交点;△=b1﹣4ac<0时,抛物线与x轴没有交点.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、B.
【解析】
试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中80出现12次,出现的次数最多,故这组数据的众数为80分;
中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数).因此这组40个按大小排序的数据中,中位数是按从小到大排列后第20,21个数的平均数,而第20,21个数都在80分组,故这组数据的中位数为80分.
故选B.
考点:1.众数;2.中位数.
14、
【解析】
两边平方解答即可.
【详解】
原方程可化为:(x-1)2=1-x,
解得:x1=0,x2=1,
经检验,x=0不是原方程的解,
x=1是原方程的解
故答案为 .
【点睛】
此题考查无理方程的解法,关键是把两边平方解答,要注意解答后一定要检验.
15、
【解析】
解:过P作PA⊥x轴于点A.∵P(2,),∴OA=2,PA=,∴tanα=.故答案为.
点睛:本题考查了解直角三角形,正切的定义,坐标与图形的性质,熟记三角函数的定义是解题的关键.
16、
【解析】
由图象得出解析式后联立方程组解答即可.
【详解】
由图象可得:y甲=4t(0≤t≤5);y乙=;
由方程组,解得t=.
故答案为.
【点睛】
此题考查一次函数的应用,关键是由图象得出解析式解答.
17、2
【解析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出ab的值即可.
【详解】
∵点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),
∴a+b=-3,-1-b=1;
解得a=-1,b=-2,
∴ab=2.
故答案为2.
【点睛】
本题考查了关于x轴,y轴对称的点的坐标,解题的关键是熟练的掌握关于y轴对称的点的坐标的性质.
18、2
【解析】
设EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.
【详解】
设EF=x,
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,
∴BD=AB=4+4,EF=BF=x,
∴BE=x,
∵∠BAE=22.5°,
∴∠DAE=90°-22.5°=67.5°,
∴∠AED=180°-45°-67.5°=67.5°,
∴∠AED=∠DAE,
∴AD=ED,
∴BD=BE+ED=x+4+2=4+4,
解得:x=2,
即EF=2.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)50,30%;(2)不能,理由见解析;(3)P=
【解析】
【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;
(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;
(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.
【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),
“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,
所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,
故答案为50,30%;
(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;
(3)由题意得树状图如下
由树状图知,共有12种等可能结果,其中恰好选中1男1女的共有8种结果,故P==.
【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.
20、阅读发现:90°;(1)证明见解析;(2)100°
【解析】
阅读发现:只要证明,即可证明.
拓展应用:欲证明,只要证明≌即可.
根据即可计算.
【详解】
解:如图中,四边形ABCD是正方形,
,,
≌,
,
,
,
,
,
,
故答案为
为等边三角形,
,.
为等边三角形,
,.
四边形ABCD为矩形,
,.
.
,,
.
在和中,
,
≌.
;
≌,
,
.
【点睛】
本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.
21、(1)作图见解析;(2)1.
【解析】
试题分析:(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;
(2)用样本估计总体的思想,即可解决问题;
试题解析:解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人
九年级被抽到的志愿者:50×20%=10人,条形图如图所示:
(2)该校共有志愿者600人,则该校九年级大约有600×20%=1人.
答:该校九年级大约有1名志愿者.
22、 (1)2;(2) x﹣y.
【解析】
分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识 点分别进行计算,然后根据实数的运算法则求得计算结果.(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.
详解:(1)原式=3﹣4﹣2×+4=2;
(2)原式=•=x﹣y.
点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
23、(1)见解析;(2)见解析;(3).
【解析】
(1)根据P(m,n)移到P(m+6,n+1)可知△ABC向右平移6个单位,向上平移了一个单位,由图形平移的性质即可得出点A1,B1,C1的坐标,再顺次连接即可;
(2)根据图形旋转的性质画出旋转后的图形即可;
(3)先求出BC长,再利用扇形面积公式,列式计算即可得解.
【详解】
解:(1)平移△ABC得到△A1B1C1,点P(m,n)移到P(m+6,n+1)处,
∴△ABC向右平移6个单位,向上平移了一个单位,
∴A1(4,4),B1(2,0),C1(8,1);
顺次连接A1,B1,C1三点得到所求的△A1B1C1
(2)如图所示:△A2B2C即为所求三角形.
(3)BC的长为:
BC扫过的面积
【点睛】
本题考查了利用旋转变换作图,利用平移变换作图,比较简单,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
24、 (1) (2)△ABC∽△DEF.
【解析】
(1)根据已知条件,结合网格可以求出∠ABC的度数,根据,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC的长;
(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC与△DEF相似.
【详解】
(1)
故答案为
(2)△ABC∽△DEF.
证明:∵在4×4的正方形方格中,
∴∠ABC=∠DEF.
∵
∴
∴△ABC∽△DEF.
【点睛】
考查勾股定理以及相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.
25、(1)直线的表达式为,双曲线的表达式为;(2)①;②当时,的大小不发生变化,的值为;③t的值为或.
【解析】
(1)由点利用待定系数法可求出直线的表达式;再由直线的表达式求出点B的坐标,然后利用待定系数法即可求出双曲线的表达式;
(2)①先求出点C的横坐标,再将其代入双曲线的表达式求出点C的纵坐标,从而即可得出t的值;
②如图1(见解析),设直线AB交y轴于M,则,取CD的中点K,连接AK、BK.利用直角三角形的性质证明A、D、B、C四点共圆,再根据圆周角定理可得,从而得出,即可解决问题;
③如图2(见解析),过点B作于M,先求出点D与点M重合的临界位置时t的值,据此分和两种情况讨论:根据三点坐标求出的长,再利用三角形相似的判定定理与性质求出DM的长,最后在中,利用勾股定理即可得出答案.
【详解】
(1)∵直线经过点和
∴将点代入得
解得
故直线的表达式为
将点代入直线的表达式得
解得
∵双曲线经过点
,解得
故双曲线的表达式为;
(2)①轴,点A的坐标为
∴点C的横坐标为12
将其代入双曲线的表达式得
∴C的纵坐标为,即
由题意得,解得
故当点C在双曲线上时,t的值为;
②当时,的大小不发生变化,求解过程如下:
若点D与点A重合
由题意知,点C坐标为
由两点距离公式得:
由勾股定理得,即
解得
因此,在范围内,点D与点A不重合,且在点A左侧
如图1,设直线AB交y轴于M,取CD的中点K,连接AK、BK
由(1)知,直线AB的表达式为
令得,则,即
点K为CD的中点,
(直角三角形中,斜边上的中线等于斜边的一半)
同理可得:
A、D、B、C四点共圆,点K为圆心
(圆周角定理)
;
③过点B作于M
由题意和②可知,点D在点A左侧,与点M重合是一个临界位置
此时,四边形ACBD是矩形,则,即
因此,分以下2种情况讨论:
如图2,当时,过点C作于N
又
,即
由勾股定理得
即
解得或(不符题设,舍去)
当时,同理可得:
解得或(不符题设,舍去)
综上所述,t的值为或.
【点睛】
本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.
26、(1);(2)y=x2;(3)点Q到x轴的最短距离为1.
【解析】
(1)先判断出m(n﹣1)=6,进而得出结论;
(2)先求出点P到点A的距离和点P到直线y=﹣1的距离建立方程即可得出结论;
(3)设出点M,N的坐标,进而得出点Q的坐标,利用MN=a,得出,即可得出结论.
【详解】
(1)设m=x,n﹣1=y,
∵mn﹣m=6,
∴m(n﹣1)=6,
∴xy=6,
∴
∴(m,n﹣1)在平面直角坐标系xOy中的轨迹是
故答案为:;
(2)∴点P(x,y)到点A(0,1),
∴点P(x,y)到点A(0,1)的距离的平方为x2+(y﹣1)2,
∵点P(x,y)到直线y=﹣1的距离的平方为(y+1)2,
∵点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,
∴x2+(y﹣1)2=(y+1)2,
∴
(3)设直线MN的解析式为y=kx+b,M(x1,y1),N(x2,y2),
∴线段MN的中点为Q的纵坐标为
∴
∴x2﹣4kx﹣4b=0,
∴x1+x2=4k,x1x2=﹣4b,
∴
∴
∴
∴点Q到x轴的最短距离为1.
【点睛】
此题是二次函数综合题,主要考查了点的轨迹的定义,两点间的距离公式,中点坐标公式公式,根与系数的关系,确定出是解本题的关键.
27、(1)证明见解析;(2)1.
【解析】
试题分析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;
(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.
试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;
(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=×4×8﹣×4×3=1.
点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.
河北省石家庄市桥西区2022年中考押题数学预测卷含解析: 这是一份河北省石家庄市桥西区2022年中考押题数学预测卷含解析,共22页。试卷主要包含了答题时请按要求用笔,下列运算正确的是等内容,欢迎下载使用。
河北省衡水安平县联考2022年中考押题数学预测卷含解析: 这是一份河北省衡水安平县联考2022年中考押题数学预测卷含解析,共24页。试卷主要包含了答题时请按要求用笔,如图,右侧立体图形的俯视图是,对于一组统计数据等内容,欢迎下载使用。
2022年河北省唐山市古治区中考押题数学预测卷含解析: 这是一份2022年河北省唐山市古治区中考押题数学预测卷含解析,共15页。试卷主要包含了在平面直角坐标系中,将点P等内容,欢迎下载使用。