![河北省唐山市名校2021-2022学年中考数学考试模拟冲刺卷含解析01](http://img-preview.51jiaoxi.com/2/3/13531136/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![河北省唐山市名校2021-2022学年中考数学考试模拟冲刺卷含解析02](http://img-preview.51jiaoxi.com/2/3/13531136/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![河北省唐山市名校2021-2022学年中考数学考试模拟冲刺卷含解析03](http://img-preview.51jiaoxi.com/2/3/13531136/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
河北省唐山市名校2021-2022学年中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是( )
A.30,28 B.26,26 C.31,30 D.26,22
2.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是( )
A. B. C. D.
3.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )
A.2.18×106 B.2.18×105 C.21.8×106 D.21.8×105
4.下列四个图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
5.若α,β是一元二次方程3x2+2x-9=0的两根,则的值是( ).
A. B.- C.- D.
6.估算的值在( )
A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间
7.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于( )
A.1∶3 B.2∶3 C.∶2 D.∶3
8.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )
A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC
C.AB=CD,AD=BC D.∠DAB+∠BCD=180°
9.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是( )
A.(2017,0) B.(2017,)
C.(2018,) D.(2018,0)
10.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F,若AB=6,则BF的长为( )
A.6 B.7 C.8 D.10
11.某中学篮球队12名队员的年龄如下表:
年龄:(岁) | 13 | 14 | 15 | 16 |
人数 | 1 | 5 | 4 | 2 |
关于这12名队员的年龄,下列说法错误的是( )
A.众数是14岁 B.极差是3岁 C.中位数是14.5岁 D.平均数是14.8岁
12.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于( )
A.4 B.6 C.2 D.8
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知二次函数的部分图象如图所示,则______;当x______时,y随x的增大而减小.
14.分式方程的解是_____.
15.如图,已知点A(2,2)在双曲线上,将线段OA沿x轴正方向平移,若平移后的线段O'A'与双曲线的交点D恰为O'A'的中点,则平移距离OO'长为____.
16.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.
17.以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为_____.
18.在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,-1)、B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分) “铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.
(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?
(2)专家建议:从安全的角度考虑,实际运行时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m%小时,求m的值.
20.(6分)关于x的一元二次方程x2﹣(2m﹣3)x+m2+1=1.
(1)若m是方程的一个实数根,求m的值;
(2)若m为负数,判断方程根的情况.
21.(6分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(A在B的左侧),其中点B(3,0),与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)将抛物线向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;
(3)设点P是抛物线上且在x轴上方的任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.
22.(8分)如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,
已知A(2,5).求:b和k的值;△OAB的面积.
23.(8分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.
根据以上信息,解答下列问题:
(1)这次调查一共抽取了 名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是 ;
(2)请将条形统计图补充完整;
(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有 名.
24.(10分)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.
(1)求证:△AGE≌△BGF;
(2)试判断四边形AFBE的形状,并说明理由.
25.(10分)(1)解不等式组:;
(2)解方程:.
26.(12分)如图,要修一个育苗棚,棚的横截面是,棚高,长,棚顶与地面的夹角为.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).(参考数据:,,)
27.(12分)先化简,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B.
【解析】
试题分析:由图可知,把7个数据从小到大排列为22,22,23,1,28,30,31,中位数是第4位数,第4位是1,所以中位数是1.平均数是(22×2+23+1+28+30+31)÷7=1,所以平均数是1.故选B.
考点:中位数;加权平均数.
2、B
【解析】
观察图形,利用中心对称图形的性质解答即可.
【详解】
选项A,新图形不是中心对称图形,故此选项错误;
选项B,新图形是中心对称图形,故此选项正确;
选项C,新图形不是中心对称图形,故此选项错误;
选项D,新图形不是中心对称图形,故此选项错误;
故选B.
【点睛】
本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.
3、A
【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】2180000的小数点向左移动6位得到2.18,
所以2180000用科学记数法表示为2.18×106,
故选A.
【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4、D
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、不是轴对称图形,是中心对称图形,故此选项不合题意;
B、是轴对称图形,不是中心对称图形,故此选项不合题意;
C、不是轴对称图形,不是中心对称图形,故此选项不合题意;
D、是轴对称图形,是中心对称图形,故此选项符合题意;
故选D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
5、C
【解析】
分析:根据根与系数的关系可得出α+β=-、αβ=-3,将其代入=中即可求出结论.
详解:∵α、β是一元二次方程3x2+2x-9=0的两根,
∴α+β=-,αβ=-3,
∴===.
故选C.
点睛:本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.
6、C
【解析】
由可知56,即可解出.
【详解】
∵
∴56,
故选C.
【点睛】
此题主要考查了无理数的估算,掌握无理数的估算是解题的关键.
7、A
【解析】
∵DE⊥AC,EF⊥AB,FD⊥BC,
∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,
∴∠C=∠FDE,
同理可得:∠B=∠DFE,∠A=DEF,
∴△DEF∽△CAB,
∴△DEF与△ABC的面积之比= ,
又∵△ABC为正三角形,
∴∠B=∠C=∠A=60°
∴△EFD是等边三角形,
∴EF=DE=DF,
又∵DE⊥AC,EF⊥AB,FD⊥BC,
∴△AEF≌△CDE≌△BFD,
∴BF=AE=CD,AF=BD=EC,
在Rt△DEC中,
DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,
又∵DC+BD=BC=AC=DC,
∴,
∴△DEF与△ABC的面积之比等于:
故选A.
点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边之比,进而得到面积比.
8、D
【解析】
首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形为菱形.所以根据菱形的性质进行判断.
【详解】
解:
四边形是用两张等宽的纸条交叉重叠地放在一起而组成的图形,
,,
四边形是平行四边形(对边相互平行的四边形是平行四边形);
过点分别作,边上的高为,.则
(两纸条相同,纸条宽度相同);
平行四边形中,,即,
,即.故正确;
平行四边形为菱形(邻边相等的平行四边形是菱形).
,(菱形的对角相等),故正确;
,(平行四边形的对边相等),故正确;
如果四边形是矩形时,该等式成立.故不一定正确.
故选:.
【点睛】
本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.
9、C
【解析】
本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,所以点F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.
【详解】
.解:∵正六边形ABCDEF一共有6条边,即6次一循环;
∴2017÷6=336余1,
∴点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,
∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,
∴点F滚动2107次时的横坐标为2017+1=2018,纵坐标为,
∴点F滚动2107次时的坐标为(2018,),
故选C.
【点睛】
本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型.
10、C
【解析】
∵∠ACB=90°,D为AB的中点,AB=6,
∴CD=AB=1.
又CE=CD,
∴CE=1,
∴ED=CE+CD=2.
又∵BF∥DE,点D是AB的中点,
∴ED是△AFB的中位线,
∴BF=2ED=3.
故选C.
11、D
【解析】
分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案.
解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意;
极差是:16﹣13=3,故选项B正确,不合题意;
中位数是:14.5,故选项C正确,不合题意;
平均数是:(13+14×5+15×4+16×2)÷12≈14.5,故选项D错误,符合题意.
故选D.
“点睛”此题主要考查了极差以及中位数和众数以及平均数的求法,正确把握相关定义是解题关键.
12、A
【解析】
解:连接OA,OC,过点O作OD⊥AC于点D,
∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,
∴∠COD=∠B=60°;
在Rt△COD中,OC=4,∠COD=60°,
∴CD=OC=2,
∴AC=2CD=4.
故选A.
【点睛】
本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、3, >1
【解析】
根据函数图象与x轴的交点,可求出c的值,根据图象可判断函数的增减性.
【详解】
解:因为二次函数的图象过点.
所以,
解得.
由图象可知:时,y随x的增大而减小.
故答案为(1). 3, (2). >1
【点睛】
此题考查二次函数图象的性质,数形结合法是解决函数问题经常采用的一种方法,关键是要找出图象与函数解析式之间的联系.
14、x=13
【解析】
解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.
【详解】
,
去分母,可得x﹣5=8,
解得x=13,
经检验:x=13是原方程的解.
【点睛】
本题主要考查了解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应检验.
15、1.
【解析】
直接利用平移的性质以及反比例函数图象上点的坐标性质得出D点坐标进而得出答案.
【详解】
∵点 A(2,2)在双曲线上,
∴k=4,
∵平移后的线段O'A'与双曲线的交点 D 恰为 O'A'的中点,
∴D点纵坐标为:1,
∴DE=1,O′E=1,
∴D点横坐标为:x==4,
∴OO′=1,
故答案为1.
【点睛】
本题考查了反比例函数图象上的性质,正确得出D点坐标是解题关键.
16、360°.
【解析】
根据多边形的外角和等于360°解答即可.
【详解】
由多边形的外角和等于360°可知,
∠1+∠2+∠3+∠4+∠5=360°,
故答案为360°.
【点睛】
本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.
17、1
【解析】
由双曲线y=(x>0)经过点D知S△ODF=k=,由矩形性质知S△AOB=2S△ODF=,据此可得OA•BE=1,根据OA=OB可得答案.
【详解】
如图,
∵双曲线y=(x>0)经过点D,
∴S△ODF=k=,
则S△AOB=2S△ODF=,即OA•BE=,
∴OA•BE=1,
∵四边形ABCD是矩形,
∴OA=OB,
∴OB•BE=1,
故答案为:1.
【点睛】
本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质.
18、 (-5,4)
【解析】
试题解析:由于图形平移过程中,对应点的平移规律相同,
由点A到点A'可知,点的横坐标减6,纵坐标加3,
故点B'的坐标为 即
故答案为:
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)1600千米;(2)1
【解析】
试题分析:(1)利用“从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时”,分别得出等式组成方程组求出即可;
(2)根据题意得出方程(80+120)(1-m%)(8+m%)=1600,进而解方程求出即可.
试题解析:
(1)设原时速为xkm/h,通车后里程为ykm,则有:
,
解得: .
答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;
(2)由题意可得出:(80+120)(1﹣m%)(8+m%)=1600,
解得:m1=1,m2=0(不合题意舍去),
答:m的值为1.
20、 (1) ; (2)方程有两个不相等的实根.
【解析】
分析:(1)由方程根的定义,代入可得到关于m的方程,则可求得m的值;
(2)计算方程根的判别式,判断判别式的符号即可.
详解:
(1)∵m是方程的一个实数根,
∴m2-(2m-3)m+m2+1=1,
∴m=−;
(2)△=b2-4ac=-12m+5,
∵m<1,
∴-12m>1.
∴△=-12m+5>1.
∴此方程有两个不相等的实数根.
点睛:考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.
21、(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)
【解析】
(1)抛物线的对称轴x=1、B(3,0)、A在B的左侧,根据二次函数图象的性质可知A(-1,0);
根据抛物线y=ax2+bx+c过点C(0,3),可知c的值.结合A、B两点的坐标,利用待定系数法求出a、b的值,可得抛物线L的表达式;
(2)由C、B两点的坐标,利用待定系数法可得CB的直线方程.对抛物线配方,还可进一步确定抛物线的顶点坐标;通过分析h为何值时抛物线顶点落在BC上、落在OB上,就能得到抛物线的顶点落在△OBC内(包括△OBC的边界)时h的取值范围.
(3)设P(m,﹣m2+2m+3),过P作MN∥x轴,交直线x=﹣3于M,过B作BN⊥MN,
通过证明△BNP≌△PMQ求解即可.
【详解】
(1)把点B(3,0),点C(0,3)代入抛物线y=﹣x2+bx+c中得:,
解得:,
∴抛物线的解析式为:y=﹣x2+2x+3;
(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,即抛物线的对称轴是:x=1,
设原抛物线的顶点为D,
∵点B(3,0),点C(0,3).
易得BC的解析式为:y=﹣x+3,
当x=1时,y=2,
如图1,当抛物线的顶点D(1,2),此时点D在线段BC上,抛物线的解析式为:y=﹣(x﹣1)2+2=﹣x2+2x+1,
h=3﹣1=2,
当抛物线的顶点D(1,0),此时点D在x轴上,抛物线的解析式为:y=﹣(x﹣1)2+0=﹣x2+2x﹣1,
h=3+1=4,
∴h的取值范围是2≤h≤4;
(3)设P(m,﹣m2+2m+3),
如图2,△PQB是等腰直角三角形,且PQ=PB,
过P作MN∥x轴,交直线x=﹣3于M,过B作BN⊥MN,
易得△BNP≌△PMQ,
∴BN=PM,
即﹣m2+2m+3=m+3,
解得:m1=0(图3)或m2=1,
∴P(1,4)或(0,3).
【点睛】
本题主要考查了待定系数法求二次函数和一次函数的解析式、二次函数的图象与性质、二次函数与一元二次方程的联系、全等三角形的判定与性质等知识点.解(1)的关键是掌握待定系数法,解(2)的关键是分顶点落在BC上和落在OB上求出h的值,解(3)的关键是证明△BNP≌△PMQ.
22、(1)b=3,k=10;(2)S△AOB=.
【解析】
(1)由直线y=x+b与双曲线y=相交于A、B两点,A(2,5),即可得到结论;
(2)过A作AD⊥x轴于D,BE⊥x轴于E,根据y=x+3,y=,得到(-5,-2),C(-3,0).求出OC=3,然后根据三角形的面积公式即可得到结论.
解:()把代入.∴∴.
把代入,∴,
∴.
()∵,.
∴时,,
∴,.∴.
又∵,
∴ .
23、(1)120,30%;(2)作图见解析;(3)1.
【解析】
试题分析:(1)用安全意识分“一般”的人数除以安全意识分“一般”的人数所占的百分比即可得这次调查一共抽取的学生人数;用安全意识分“很强”的人数除以这次调查一共抽取的学生人数即可得安全意识“很强”的学生占被调查学生总数的百分比;(2)用这次调查一共抽取的学生人数乘以安全意识分“较强”的人数所占的百分比即可得安全意识分“较强”的人数,在条形统计图上画出即可;(3)用总人数乘以安全意识为“淡薄”、 “一般”的学生一共所占的百分比即可得全校需要强化安全教育的学生的人数.
试题解析:(1) 12÷15%=120人;36÷120=30%;
(2)120×45%=54人,补全统计图如下:
(3)1800×=1人.
考点:条形统计图;扇形统计图;用样本估计总体.
24、 (1)证明见解析(2)四边形AFBE是菱形
【解析】
试题分析:(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF即可;
(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.
试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);
(2)解:四边形AFBE是菱形,理由如下:
∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.
考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.
25、(1)﹣2≤x<2;(2)x=.
【解析】
(1)先求出不等式组中每个不等式的解集,再求出不等式组的解集即可;
(2)先把分式方程转化成整式方程,求出整式方程的解,再进行检验即可.
【详解】
(1),
∵解不等式①得:x<2,
解不等式②得:x≥﹣2,
∴不等式组的解集为﹣2≤x<2;
(2)方程两边都乘以(2x﹣1)(x﹣2)得
2x(x﹣2)+x(2x﹣1)=2(x﹣2)(2x﹣1),
解得:x=,
检验:把x=代入(2x﹣1)(x﹣2)≠0,
所以x=是原方程的解,
即原方程的解是x=.
【点睛】
本题考查了解一元一次不等式组和解分式方程,根据不等式的解集找出不等式组的解集是解(1 )的关键,能把分式方程转化成整式方程是解(2)的关键.
26、33.3
【解析】
根据解直角三角形的知识先求出AC的值,再根据矩形的面积计算方法求解即可.
【详解】
解:∵AC= ===
∴矩形面积=10≈33.3(平方米)
答:覆盖在顶上的塑料薄膜需33.3平方米
【点睛】
本题考查了解直角三角形的应用,掌握正弦的定义是解题的关键.
27、-5
【解析】
根据分式的运算法则以及实数的运算法则即可求出答案.
【详解】
当x=sin30°+2﹣1+时,
∴x=++2=3,
原式=÷==﹣5.
【点睛】
本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
天津市达标名校2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份天津市达标名校2021-2022学年中考数学考试模拟冲刺卷含解析,共21页。试卷主要包含了下列计算,正确的是等内容,欢迎下载使用。
河北省唐山市滦南县2022年中考数学考试模拟冲刺卷含解析: 这是一份河北省唐山市滦南县2022年中考数学考试模拟冲刺卷含解析,共27页。试卷主要包含了下列事件中必然发生的事件是,若分式方程无解,则a的值为,下列运算正确的是等内容,欢迎下载使用。
2022年河北省唐山市乐亭县重点达标名校中考数学考试模拟冲刺卷含解析: 这是一份2022年河北省唐山市乐亭县重点达标名校中考数学考试模拟冲刺卷含解析,共28页。试卷主要包含了考生必须保证答题卡的整洁,下列各式中,计算正确的是等内容,欢迎下载使用。