终身会员
搜索
    上传资料 赚现金

    河南省郑州汝州区五校联考2022年中考一模数学试题含解析

    立即下载
    加入资料篮
    河南省郑州汝州区五校联考2022年中考一模数学试题含解析第1页
    河南省郑州汝州区五校联考2022年中考一模数学试题含解析第2页
    河南省郑州汝州区五校联考2022年中考一模数学试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河南省郑州汝州区五校联考2022年中考一模数学试题含解析

    展开

    这是一份河南省郑州汝州区五校联考2022年中考一模数学试题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法,化简的结果为等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.把不等式组的解集表示在数轴上,正确的是(  )
    A. B.
    C. D.
    2.已知圆锥的侧面积为10πcm2,侧面展开图的圆心角为36°,则该圆锥的母线长为(  )
    A.100cm B.cm C.10cm D.cm
    3.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为( )

    A.4.5cm B.5.5cm C.6.5cm D.7cm
    4.如图,、是的切线,点在上运动,且不与,重合,是直径.,当时,的度数是(  )

    A. B. C. D.
    5.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是( )
    A. B. C. D.
    6.如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则△ACD的周长为(  )

    A.13 B.17 C.18 D.25
    7.如图,在⊙O中,弦AB=CD,AB⊥CD于点E,已知CE•ED=3,BE=1,则⊙O的直径是(  )

    A.2 B. C.2 D.5
    8.下列说法:
    四边相等的四边形一定是菱形
    顺次连接矩形各边中点形成的四边形一定是正方形
    对角线相等的四边形一定是矩形
    经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分
    其中正确的有  个.
    A.4 B.3 C.2 D.1
    9.化简的结果为( )
    A.﹣1 B.1 C. D.
    10.如图是由5个相同的正方体搭成的几何体,其左视图是( )

    A. B.
    C. D.
    11.已知二次函数y=x2 + bx +c 的图象与x轴相交于A、B两点,其顶点为P,若S△APB=1,则b与c满足的关系是( )
    A.b2 -4c +1=0 B.b2 -4c -1=0 C.b2 -4c +4 =0 D.b2 -4c -4=0
    12.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为(  )

    A.(,) B.(2,) C.(,) D.(,3﹣)
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为_____.
    14.如果m,n互为相反数,那么|m+n﹣2016|=___________.
    15.如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_米.(结果精确到0.1米,参考数据:≈1.41,≈1.73)

    16.如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是_____.

    17.如图,点A1,B1,C1,D1,E1,F1分别是正六边形ABCDEF六条边的中点,连接AB1,BC1,CD1,DE1,EF1,FA1后得到六边形GHIJKL,则S六边形GHIJKI:S六边形ABCDEF的值为____.

    18.分解因式:x2y﹣6xy+9y=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.
    (1)甲、乙两种材料每千克分别是多少元?
    (2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?
    (3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.
    20.(6分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.
    (1)求证:AH是⊙O的切线;
    (2)若OB=4,AC=6,求sin∠ACB的值;
    (3)若,求证:CD=DH.

    21.(6分)已知关于x的一元二次方程有实数根.
    (1)求k的取值范围;
    (2)若k为正整数,且方程有两个非零的整数根,求k的取值.
    22.(8分)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,AB=BD,反比例函数在第一象限内的图象经过点D(m,2)和AB边上的点E(n,).
    (1)求m、n的值和反比例函数的表达式.
    (2)将矩形OABC的一角折叠,使点O与点D重合,折痕分别与x轴,y轴正半轴交于点F,G,求线段FG的长.

    23.(8分)如图,已知反比例函数和一次函数的图象相交于第一象限内的点A,且点A的横坐标为1.过点A作AB⊥x轴于点B,△AOB的面积为1.
    求反比例函数和一次函数的解析式.若一次函数的图象与x轴相交于点C,求∠ACO的度数.结合图象直接写出:当>>0时,x的取值范围.
    24.(10分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:
    (1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;
    (2)当降价多少元时,每星期的利润最大?最大利润是多少?
    25.(10分)先化简,再求值:,其中x=,y=.
    26.(12分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?
    27.(12分)已知:如图所示,在中,,,求和的度数.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.
    【详解】

    由①,得x≥2,
    由②,得x<1,
    所以不等式组的解集是:2≤x<1.
    不等式组的解集在数轴上表示为:

    故选A.
    【点睛】
    本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    2、C
    【解析】
    圆锥的侧面展开图是扇形,利用扇形的面积公式可求得圆锥的母线长.
    【详解】
    设母线长为R,则
    圆锥的侧面积==10π,
    ∴R=10cm,
    故选C.
    【点睛】
    本题考查了圆锥的计算,熟练掌握扇形面积是解题的关键.
    3、A
    【解析】
    试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).
    故选A.
    考点:轴对称图形的性质
    4、B
    【解析】
    连接OB,由切线的性质可得,由邻补角相等和四边形的内角和可得,再由圆周角定理求得,然后由平行线的性质即可求得.
    【详解】
    解,连结OB,

    ∵、是的切线,
    ∴,,则,
    ∵四边形APBO的内角和为360°,即,
    ∴,
    又∵,,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    故选:B.
    【点睛】
    本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答.
    5、C
    【解析】
    由实际问题抽象出方程(行程问题).
    【分析】∵甲车的速度为千米/小时,则乙甲车的速度为千米/小时
    ∴甲车行驶30千米的时间为,乙车行驶40千米的时间为,
    ∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得.故选C.
    6、C
    【解析】
    在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在Rt△ABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=AB,所以△ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C.
    7、C
    【解析】
    作OH⊥AB于H,OG⊥CD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可.
    【详解】
    解:作OH⊥AB于H,OG⊥CD于G,连接OA,
    由相交弦定理得,CE•ED=EA•BE,即EA×1=3,
    解得,AE=3,
    ∴AB=4,
    ∵OH⊥AB,
    ∴AH=HB=2,
    ∵AB=CD,CE•ED=3,
    ∴CD=4,
    ∵OG⊥CD,
    ∴EG=1,
    由题意得,四边形HEGO是矩形,
    ∴OH=EG=1,
    由勾股定理得,OA=,
    ∴⊙O的直径为,
    故选C.

    【点睛】
    此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键.
    8、C
    【解析】
    ∵四边相等的四边形一定是菱形,∴①正确;
    ∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;
    ∵对角线相等的平行四边形才是矩形,∴③错误;
    ∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;
    其中正确的有2个,故选C.
    考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.
    9、B
    【解析】
    先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.
    【详解】
    解:.
    故选B.
    10、A
    【解析】
    根据三视图的定义即可判断.
    【详解】
    根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.
    【点睛】
    本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.
    11、D
    【解析】
    抛物线的顶点坐标为P(−,),设A 、B两点的坐标为A(,0)、B(,0)则AB=,根据根与系数的关系把AB的长度用b、c表示,而S△APB=1,然后根据三角形的面积公式就可以建立关于b、c的等式.
    【详解】
    解:∵,
    ∴AB==,
    ∵若S△APB=1
    ∴S△APB=×AB× =1,

    ∴−××,
    ∴,
    设=s,
    则,
    故s=2,
    ∴=2,
    ∴.
    故选D.
    【点睛】
    本题主要考查了抛物线与x轴的交点情况与判别式的关系、抛物线顶点坐标公式、三角形的面积公式等知识,综合性比较强.
    12、A
    【解析】
    解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=×=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴点D的坐标为(,).故选A.


    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2.
    【解析】
    把x=m代入方程,求出2m2﹣3m=2,再变形后代入,即可求出答案.
    【详解】
    解:∵m是方程2x2﹣3x﹣2=0的一个根,
    ∴代入得:2m2﹣3m﹣2=0,
    ∴2m2﹣3m=2,
    ∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,
    故答案为:2.
    【点睛】
    本题考查了求代数式的值和一元二次方程的解,解此题的关键是能求出2m2﹣3m=2.
    14、1.
    【解析】
    试题分析:先用相反数的意义确定出m+n=0,从而求出|m+n﹣1|,∵m,n互为相反数,∴m+n=0,∴|m+n﹣1|=|﹣1|=1;故答案为1.
    考点:1.绝对值的意义;2.相反数的性质.
    15、2.9
    【解析】
    试题分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.
    考点:解直角三角形.
    16、
    【解析】
    试题分析:如图所示,一只蚂蚁从点出发后有ABD、ABE、ACE、ACF四条路,所以蚂蚁从出发到达处的概率是.
    考点:概率.
    17、.
    【解析】
    设正六边形ABCDEF的边长为4a,则AA1=AF1=FF1=2a.求出正六边形的边长,根据S六边形GHIJKI:S六边形ABCDEF=()2,计算即可;
    【详解】
    设正六边形ABCDEF的边长为4a,则AA1=AF1=FF1=2a,

    作A1M⊥FA交FA的延长线于M,
    在Rt△AMA1中,∵∠MAA1=60°,
    ∴∠MA1A=30°,
    ∴AM=AA1=a,
    ∴MA1=AA1·cos30°=a,FM=5a,
    在Rt△A1FM中,FA1=,
    ∵∠F1FL=∠AFA1,∠F1LF=∠A1AF=120°,
    ∴△F1FL∽△A1FA,
    ∴,
    ∴,
    ∴FL=a,F1L=a,
    根据对称性可知:GA1=F1L=a,
    ∴GL=2a﹣a=a,
    ∴S六边形GHIJKI:S六边形ABCDEF=()2=,
    故答案为:.
    【点睛】
    本题考查正六边形与圆,解直角三角形,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题.
    18、y(x﹣3)2
    【解析】
    本题考查因式分解.
    解答:.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)甲种材料每千克25元,乙种材料每千克35元.(2)共有四种方案;(3)生产A产品21件,B产品39件成本最低.
    【解析】
    试题分析:(1)、首先设甲种材料每千克x元, 乙种材料每千克y元,根据题意列出二元一次方程组得出答案;(2)、设生产B产品a件,则A产品(60-a)件,根据题意列出不等式组,然后求出a的取值范围,得出方案;得出生产成本w与a的函数关系式,根据函数的增减性得出答案.
    试题解析:(1)设甲种材料每千克x元, 乙种材料每千克y元,
    依题意得:解得:
    答:甲种材料每千克25元, 乙种材料每千克35元.
    (2)生产B产品a件,生产A产品(60-a)件. 依题意得:
    解得:
    ∵a的值为非负整数 ∴a=39、40、41、42
    ∴共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件
    (3)、答:生产A产品21件,B产品39件成本最低.
    设生产成本为W元,则W与a的关系式为:w=(25×4+35×1+40)(60-a)+(35×+25×3+50)a=55a+10500
    ∵k=55>0 ∴W随a增大而增大∴当a=39时,总成本最低.
    考点:二元一次方程组的应用、不等式组的应用、一次函数的应用.
    20、(1)证明见解析;(2);(3)证明见解析.
    【解析】
    (1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;
    (2)利用正弦的定义计算;
    (3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.
    【详解】
    (1)证明:连接OA,
    由圆周角定理得,∠ACB=∠ADB,
    ∵∠ADE=∠ACB,
    ∴∠ADE=∠ADB,
    ∵BD是直径,
    ∴∠DAB=∠DAE=90°,
    在△DAB和△DAE中,

    ∴△DAB≌△DAE,
    ∴AB=AE,又∵OB=OD,
    ∴OA∥DE,又∵AH⊥DE,
    ∴OA⊥AH,
    ∴AH是⊙O的切线;
    (2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,
    ∴∠E=∠ACD,
    ∴AE=AC=AB=1.
    在Rt△ABD中,AB=1,BD=8,∠ADE=∠ACB,
    ∴sin∠ADB==,即sin∠ACB=;
    (3)证明:由(2)知,OA是△BDE的中位线,
    ∴OA∥DE,OA=DE.
    ∴△CDF∽△AOF,
    ∴=,
    ∴CD=OA=DE,即CD=CE,
    ∵AC=AE,AH⊥CE,
    ∴CH=HE=CE,
    ∴CD=CH,
    ∴CD=DH.

    【点睛】
    本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.
    21、(1);(2)k=1
    【解析】
    (1)根据一元二次方程2x2+4x+k﹣1=0有实数根,可得出△≥0,解不等式即可得出结论;
    (2)分别把k的正整数值代入方程2x2+4x+k﹣1=0,根据解方程的结果进行分析解答.
    【详解】
    (1)由题意得:△=16﹣8(k﹣1)≥0,∴k≤1.
    (2)∵k为正整数,∴k=1,2,1.
    当k=1时,方程2x2+4x+k﹣1=0变为:2x2+4x =0,解得:x=0或x=-2,有一个根为零;
    当k=2时,方程2x2+4x+k﹣1=0变为:2x2+4x +1=0,解得:x=,无整数根;
    当k=1时,方程2x2+4x+k﹣1=0变为:2x2+4x +2=0,解得:x1=x2=-1,有两个非零的整数根.
    综上所述:k=1.
    【点睛】
    本题考查了一元二次方程根的判别式:
    (1)△>0⇔方程有两个不相等的实数根;
    (2)△=0⇔方程有两个相等的实数根;
    (1)△<0⇔方程没有实数根.
    22、(1)y=;(2).
    【解析】
    (1)根据题意得出,解方程即可求得m、n的值,然后根据待定系数法即可求得反比例函数的解析式;
    (2)设OG=x,则GD=OG=x,CG=2﹣x,根据勾股定理得出关于x的方程,解方程即可求得DG的长,过F点作FH⊥CB于H,易证得△GCD∽△DHF,根据相似三角形的性质求得FG,最后根据勾股定理即可求得.
    【详解】
    (1)∵D(m,2),E(n,),
    ∴AB=BD=2,
    ∴m=n﹣2,
    ∴,解得,
    ∴D(1,2),
    ∴k=2,
    ∴反比例函数的表达式为y=;
    (2)设OG=x,则GD=OG=x,CG=2﹣x,
    在Rt△CDG中,x2=(2﹣x)2+12,
    解得x=,
    过F点作FH⊥CB于H,
    ∵∠GDF=90°,
    ∴∠CDG+∠FDH=90°,
    ∵∠CDG+∠CGD=90°,
    ∴∠CGD=∠FDH,
    ∵∠GCD=∠FHD=90°,
    ∴△GCD∽△DHF,
    ∴,即,
    ∴FD=,
    ∴FG=.

    【点睛】
    本题考查了反比例函数与几何综合题,涉及了待定系数法、勾股定理、相似三角形的判定与性质等,熟练掌握待定系数法、相似三角形的判定与性质是解题的关键.
    23、(1)y=;y=x+1;(2)∠ACO=45°;(3)0 【解析】
    (1)根据△AOB的面积可求AB,得A点坐标.从而易求两个函数的解析式;
    (2)求出C点坐标,在△ABC中运用三角函数可求∠ACO的度数;
    (3)观察第一象限内的图形,反比例函数的图象在一次函数的图象的上面部分对应的x的值即为取值范围.
    【详解】
    (1)∵△AOB的面积为1,并且点A在第一象限,
    ∴k=2,∴y=;
    ∵点A的横坐标为1,
    ∴A(1,2).
    把A(1,2)代入y=ax+1得,a=1.
    ∴y=x+1.
    (2)令y=0,0=x+1,
    ∴x=−1,
    ∴C(−1,0).
    ∴OC=1,BC=OB+OC=2.
    ∴AB=CB,
    ∴∠ACO=45°.
    (3)由图象可知,在第一象限,当y>y>0时,0 在第三象限,当y>y>0时,−1 【点睛】
    此题考查反比例函数与一次函数的交点问题,解题关键在于结合函数图象进行解答.
    24、 (1) 0≤x<20;(2) 降价2.5元时,最大利润是6125元
    【解析】
    (1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x的取值范围.
    (2)将所得函数解析式配方成顶点式可得最大值.
    【详解】
    (1)根据题意得y=(70−x−50)(300+20x)=−20x2+100x+6000,
    ∵70−x−50>0,且x≥0,
    ∴0≤x<20.
    (2)∵y=−20x2+100x+6000=−20(x−)2+6125,
    ∴当x=时,y取得最大值,最大值为6125,
    答:当降价2.5元时,每星期的利润最大,最大利润是6125元.
    【点睛】
    本题考查的知识点是二次函数的应用,解题的关键是熟练的掌握二次函数的应用.
    25、x+y,.
    【解析】
    试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题.
    试题解析:原式= ==x+y,
    当x=,y==2时,原式=﹣2+2=.
    26、12
    【解析】
    设矩形的长为x步,则宽为(60﹣x)步,根据题意列出方程,求出方程的解即可得到结果.
    【详解】
    解:设矩形的长为x步,则宽为(60﹣x)步,
    依题意得:x(60﹣x)=864,
    整理得:x2﹣60x+864=0,
    解得:x=36或x=24(不合题意,舍去),
    ∴60﹣x=60﹣36=24(步),
    ∴36﹣24=12(步),
    则该矩形的长比宽多12步.
    【点睛】
    此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.
    27、,.
    【解析】
    根据等腰三角形的性质即可求出∠B,再根据三角形外角定理即可求出∠C.
    【详解】
    在中,,
    ∵,在三角形中,

    又∵,在三角形中,
    ∴.
    【点睛】
    此题主要考查等腰三角形的性质,解题的关键是熟知等边对等角.

    相关试卷

    2023-2024学年河南省郑州汝州区五校联考九上数学期末调研模拟试题含答案:

    这是一份2023-2024学年河南省郑州汝州区五校联考九上数学期末调研模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    河南省郑州汝州区五校联考2023-2024学年八上数学期末质量跟踪监视试题含答案:

    这是一份河南省郑州汝州区五校联考2023-2024学年八上数学期末质量跟踪监视试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知函数和,当时,的取值范围是,下列命题是假命题的是,点P等内容,欢迎下载使用。

    2022-2023学年河南省郑州汝州区五校联考数学七年级第二学期期末达标检测试题含答案:

    这是一份2022-2023学年河南省郑州汝州区五校联考数学七年级第二学期期末达标检测试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列计算错误的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map