终身会员
搜索
    上传资料 赚现金
    河南周口港区达标名校2021-2022学年中考数学模拟预测试卷含解析
    立即下载
    加入资料篮
    河南周口港区达标名校2021-2022学年中考数学模拟预测试卷含解析01
    河南周口港区达标名校2021-2022学年中考数学模拟预测试卷含解析02
    河南周口港区达标名校2021-2022学年中考数学模拟预测试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河南周口港区达标名校2021-2022学年中考数学模拟预测试卷含解析

    展开
    这是一份河南周口港区达标名校2021-2022学年中考数学模拟预测试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,函数的自变量x的取值范围是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF的周长是(  )cm.

    A.7 B.11 C.13 D.16
    2.估算的值在(    )
    A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间
    3.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( )
    A.q<16 B.q>16
    C.q≤4 D.q≥4
    4.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为(  )
    A.180元 B.200元 C.225元 D.259.2元
    5.下列运算正确的是(  )
    A.a4+a2=a4 B.(x2y)3=x6y3
    C.(m﹣n)2=m2﹣n2 D.b6÷b2=b3
    6.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为(  )
    A.= B.=
    C.= D.=
    7.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为
    A. B.x(x+1)=1980
    C.2x(x+1)=1980 D.x(x-1)=1980
    8.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为(  )

    A.15 B.17 C.19 D.24
    9.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是(  )

    A.SAS B.SSS C.AAS D.ASA
    10.函数的自变量x的取值范围是( )
    A.x>1 B.x<1 C.x≤1 D.x≥1
    11.如图,是的直径,是的弦,连接,,,则与的数量关系为( )

    A. B.
    C. D.
    12.已知一次函数y=ax﹣x﹣a+1(a为常数),则其函数图象一定过象限(  )
    A.一、二 B.二、三 C.三、四 D.一、四
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n个图案中正三角形的个数为 (用含n的代数式表示).

    14.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm

    15.将数字37000000用科学记数法表示为_____.
    16.如图,一艘船向正北航行,在A处看到灯塔S在船的北偏东30°的方向上,航行12海里到达B点,在B处看到灯塔S在船的北偏东60°的方向上,此船继续沿正北方向航行过程中距灯塔S的最近距离是_____海里(不近似计算).

    17.若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为__________.
    18.如图,圆锥底面圆心为O,半径OA=1,顶点为P,将圆锥置于平面上,若保持顶点P位置不变,将圆锥顺时针滚动三周后点A恰好回到原处,则圆锥的高OP=_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.

    (1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.
    (2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.
    20.(6分)如图,在中,,点在上运动,点在上,始终保持与相等,的垂直平分线交于点,交于,
    判断与的位置关系,并说明理由;若,,,求线段的长.
    21.(6分)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.
    (1)求证:AC平分∠DAO.
    (2)若∠DAO=105°,∠E=30°
    ①求∠OCE的度数;
    ②若⊙O的半径为2,求线段EF的长.

    22.(8分)某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或销售鱼50斤,设安排x名员工负责打捞,剩下的负责到市场销售.
    (1)若养殖场一天的总销售收入为y元,求y与x的函数关系式;
    (2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值.
    23.(8分)先化简,然后从﹣1,0,2中选一个合适的x的值,代入求值.
    24.(10分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC,AB于点E,F.
    (1)若∠B=30°,求证:以A,O,D,E为顶点的四边形是菱形;
    (2)填空:若AC=6,AB=10,连接AD,则⊙O的半径为  ,AD的长为   .

    25.(10分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.
    (1)求A、B两种钢笔每支各多少元?
    (2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案?
    (3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?
    26.(12分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.

    27.(12分)如图,已知二次函数的图象与轴交于,两点在左侧),与轴交于点,顶点为.

    (1)当时,求四边形的面积;
    (2)在(1)的条件下,在第二象限抛物线对称轴左侧上存在一点,使,求点的坐标;
    (3)如图2,将(1)中抛物线沿直线向斜上方向平移个单位时,点为线段上一动点,轴交新抛物线于点,延长至,且,若的外角平分线交点在新抛物线上,求点坐标.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.
    【详解】
    ∵将线段DC沿着CB的方向平移7cm得到线段EF,
    ∴EF=DC=4cm,FC=7cm,
    ∵AB=AC,BC=12cm,
    ∴∠B=∠C,BF=5cm,
    ∴∠B=∠BFE,
    ∴BE=EF=4cm,
    ∴△EBF的周长为:4+4+5=13(cm).
    故选C.
    【点睛】
    此题主要考查了平移的性质,根据题意得出BE的长是解题关键.
    2、C
    【解析】
    由可知56,即可解出.
    【详解】

    ∴56,
    故选C.
    【点睛】
    此题主要考查了无理数的估算,掌握无理数的估算是解题的关键.
    3、A
    【解析】
    ∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,
    ∴△>0,即82-4q>0,
    ∴q<16,
    故选 A.
    4、A
    【解析】
    设这种商品每件进价为x元,根据题中的等量关系列方程求解.
    【详解】
    设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.
    【点睛】
    本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.
    5、B
    【解析】
    分析:根据合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,逐一计算判断即可.
    详解:根据同类项的定义,可知a4与a2不是同类项,不能计算,故不正确;
    根据积的乘方,等于个个因式分别乘方,可得(x2y)3=x6y3,故正确;
    根据完全平方公式,可得(m-n)2=m2-2mn+n2,故不正确;
    根据同底数幂的除法,可知b6÷b2=b4,不正确.
    故选B.
    点睛:此题主要考查了合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,熟记并灵活运用是解题关键.
    6、A
    【解析】
    分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.
    详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.
    故选A.
    点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.
    7、D
    【解析】
    根据题意得:每人要赠送(x﹣1)张相片,有x个人,然后根据题意可列出方程.
    【详解】
    根据题意得:每人要赠送(x﹣1)张相片,有x个人,
    ∴全班共送:(x﹣1)x=1980,
    故选D.
    【点睛】
    此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x﹣1)张相片,有x个人是解决问题的关键.
    8、D
    【解析】
    由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.
    【详解】
    解:解:∵第①个图案有三角形1个,
    第②图案有三角形1+3=4个,
    第③个图案有三角形1+3+4=8个,

    ∴第n个图案有三角形4(n﹣1)个(n>1时),
    则第⑦个图中三角形的个数是4×(7﹣1)=24个,
    故选D.
    【点睛】
    本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出an=4(n﹣1)是解题的关键.
    9、B
    【解析】
    由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.
    【详解】
    由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',
    故选:B.
    【点睛】
    本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理.
    10、C
    【解析】
    试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
    试题解析:根据题意得:1-x≥0,
    解得:x≤1.
    故选C.
    考点:函数自变量的取值范围.
    11、C
    【解析】
    首先根据圆周角定理可知∠B=∠C,再根据直径所得的圆周角是直角可得∠ADB=90°,然后根据三角形的内角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,从而得到结果.
    【详解】
    解:∵是的直径,
    ∴∠ADB=90°.
    ∴∠DAB+∠B=90°.
    ∵∠B=∠C,
    ∴∠DAB+∠C=90°.
    故选C.
    【点睛】
    本题考查了圆周角定理及其逆定理和三角形的内角和定理,掌握相关知识进行转化是解题的关键.
    12、D
    【解析】
    分析:根据一次函数的图形与性质,由一次函数y=kx+b的系数k和b的符号,判断所过的象限即可.
    详解:∵y=ax﹣x﹣a+1(a为常数),
    ∴y=(a-1)x-(a-1)
    当a-1>0时,即a>1,此时函数的图像过一三四象限;
    当a-1<0时,即a<1,此时函数的图像过一二四象限.
    故其函数的图像一定过一四象限.
    故选D.
    点睛:此题主要考查了一次函数的图像与性质,利用一次函数的图像与性质的关系判断即可.
    一次函数y=kx+b(k≠0,k、b为常数)的图像与性质:当k>0,b>0时,图像过一二三象限,y随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、4n+1
    【解析】
    分析可知规律是每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.
    【详解】
    解:第一个图案正三角形个数为6=1+4;
    第二个图案正三角形个数为1+4+4=1+1×4;
    第三个图案正三角形个数为1+1×4+4=1+3×4;
    …;
    第n个图案正三角形个数为1+(n﹣1)×4+4=1+4n=4n+1.
    故答案为4n+1.
    考点:规律型:图形的变化类.
    14、
    【解析】
    试题分析:根据,EF=4可得:AB=和BC的长度,根据阴影部分的面积为54可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为,则菱形的周长为:×4=.
    考点:菱形的性质.
    15、3.7×107
    【解析】
    根据科学记数法即可得到答案.
    【详解】
    数字37000000用科学记数法表示为3.7×107.
    【点睛】
    本题主要考查了科学记数法的基本概念,解本题的要点在于熟知科学记数法的相关知识.
    16、6
    【解析】
    试题分析:过S作AB的垂线,设垂足为C.根据三角形外角的性质,易证SB=AB.在Rt△BSC中,运用正弦函数求出SC的长.
    解:过S作SC⊥AB于C.

    ∵∠SBC=60°,∠A=30°,
    ∴∠BSA=∠SBC﹣∠A=30°,
    即∠BSA=∠A=30°.
    ∴SB=AB=1.
    Rt△BCS中,BS=1,∠SBC=60°,
    ∴SC=SB•sin60°=1×=6(海里).
    即船继续沿正北方向航行过程中距灯塔S的最近距离是6海里.
    故答案为:6.
    17、6
    【解析】
    设这个扇形的半径为,根据题意可得:
    ,解得:.
    故答案为.
    18、
    【解析】
    先利用圆的周长公式计算出PA的长,然后利用勾股定理计算PO的长.
    【详解】
    解:根据题意得2π×PA=3×2π×1,
    所以PA=3,
    所以圆锥的高OP=
    故答案为.
    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2);3.
    【解析】
    试题分析:(1)连接OD、OE、ED.先证明△AOE是等边三角形,得到AE=AO=0D,则四边形AODE是平行四边形,然后由OA=OD证明四边形AODE是菱形;
    (2)连接OD、DF.先由△OBD∽△ABC,求出⊙O的半径,然后证明△ADC∽△AFD,得出AD2=AC•AF,进而求出AD.
    试题解析:(1)证明:如图1,连接OD、OE、ED.
    ∵BC与⊙O相切于一点D,
    ∴OD⊥BC,
    ∴∠ODB=90°=∠C,
    ∴OD∥AC,
    ∵∠B=30°,
    ∴∠A=60°,
    ∵OA=OE,
    ∴△AOE是等边三角形,
    ∴AE=AO=0D,
    ∴四边形AODE是平行四边形,
    ∵OA=OD,
    ∴四边形AODE是菱形.

    (2)解:设⊙O的半径为r.
    ∵OD∥AC,
    ∴△OBD∽△ABC.
    ∴,即8r=6(8﹣r).
    解得r=,
    ∴⊙O的半径为.
    如图2,连接OD、DF.
    ∵OD∥AC,
    ∴∠DAC=∠ADO,
    ∵OA=OD,
    ∴∠ADO=∠DAO,
    ∴∠DAC=∠DAO,
    ∵AF是⊙O的直径,
    ∴∠ADF=90°=∠C,
    ∴△ADC∽△AFD,
    ∴,
    ∴AD2=AC•AF,
    ∵AC=6,AF=,
    ∴AD2=×6=45,
    ∴AD==3.

    点评:本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、菱形的判定和性质以及相似三角形的判定和性质,是一个综合题,难度中等.熟练掌握相关图形的性质及判定是解本题的关键.
    考点:切线的性质;菱形的判定与性质;相似三角形的判定与性质.
    20、(1).理由见解析;(2).
    【解析】
    (1)根据得到∠A=∠PDA,根据线段垂直平分线的性质得到,利用,得到,于是得到结论;
    (2)连接PE,设DE=x,则EB=ED=x,CE=8-x,根据勾股定理即可得到结论.
    【详解】
    (1).理由如下,
    ∵,
    ∴,
    ∵,
    ∴,
    ∵垂直平分,
    ∴,
    ∴,
    ∴,
    ∴,
    即.
    (2)

    连接,设,
    由(1)得,,又,,
    ∵,
    ∴,
    ∴,
    解得,即.
    【点睛】
    本题考查了线段垂直平分线的性质,直角三角形的性质,勾股定理,正确的作出辅助线解题的关键.
    21、(1)证明见解析;(2)①∠OCE=45°;②EF =-2.
    【解析】
    【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.
    又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC. ∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.
    (2)①因为 AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,∠EOC=∠DAO=105°,在 中,∠E=30°,利用内角和定理,得:∠OCE=45°.
    ②作OG⊥CE于点G,根据垂径定理可得FG=CG, 因为OC=,∠OCE=45°.等腰直角三角形的斜边是腰长的 倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=, 则EF=GE-FG=-2.
    【试题解析】
    (1)∵直线与⊙O相切,∴OC⊥CD.
    又∵AD⊥CD,∴AD//OC.
    ∴∠DAC=∠OCA.
    又∵OC=OA,∴∠OAC=∠OCA.
    ∴∠DAC=∠OAC.
    ∴AC平分∠DAO.
    (2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°
    ∵∠E=30°,∴∠OCE=45°.
    ②作OG⊥CE于点G,可得FG=CG
    ∵OC=,∠OCE=45°.∴CG=OG=2.
    ∴FG=2.
    ∵在Rt△OGE中,∠E=30°,∴GE=.
    ∴EF=GE-FG=-2.

    【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.
    22、(1)y=﹣50x+10500;(2)安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.
    【解析】
    (1)根据题意可以得到y关于x的函数解析式,本题得以解决;
    (2)根据题意可以得到x的不等式组,从而可以求得x的取值范围,从而可以得到y的最大值,本题得以解决.
    【详解】
    (1)由题意可得,
    y=10×50(30﹣x)+3[100x﹣50(30﹣x)]=﹣50x+10500,
    即y与x的函数关系式为y=﹣50x+10500;
    (2)由题意可得,,得x,
    ∵x是整数,y=﹣50x+10500,
    ∴当x=12时,y取得最大值,此时,y=﹣50×12+10500=9900,30﹣x=18,
    答:安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.
    【点睛】
    本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.
    23、-.
    【解析】
    先把分式除法转换成乘法进行约分化简,然后再找出分式的最小公分母通分进行化简求值,在代入求值时要保证每一个分式的分母不能为1
    【详解】
    解:原式= -
    = -
    =
    =
    =- .
    当x=-1或者x=1时分式没有意义
    所以选择当x=2时,原式=.
    【点睛】
    分式的化简求值是此题的考点,需要特别注意的是分式的分母不能为1.
    24、 (1) 见解析;(2)
    【解析】
    (1) 先通过证明△AOE为等边三角形, 得出AE=OD, 再根据“同位角相等, 两直线平行” 证明AE//OD, 从而证得四边形AODE是平行四边形, 再根据 “一组邻边相等的平行四边形为菱形” 即可得证.
    (2) 利用在Rt△OBD中,sin∠B==可得出半径长度,在Rt△ODB中BD=,可求得BD的长,由CD=CB﹣BD可得CD的长,在RT△ACD中,AD=,即可求出AD长度.
    【详解】
    解:(1)证明:
    连接OE、ED、OD,
    在Rt△ABC中,∵∠B=30°,
    ∴∠A=60°,
    ∵OA=OE,∴△AEO是等边三角形,
    ∴AE=OE=AO
    ∵OD=OA,
    ∴AE=OD
    ∵BC是圆O的切线,OD是半径,
    ∴∠ODB=90°,又∵∠C=90°
    ∴AC∥OD,又∵AE=OD
    ∴四边形AODE是平行四边形,
    ∵OD=OA
    ∴四边形AODE是菱形.
    (2)
    在Rt△ABC中,∵AC=6,AB=10,
    ∴sin∠B==,BC=8
    ∵BC是圆O的切线,OD是半径,
    ∴∠ODB=90°,
    在Rt△OBD中,sin∠B==,
    ∴OB=OD
    ∵AO+OB=AB=10,
    ∴OD+OD=10
    ∴OD=
    ∴OB=OD=
    ∴BD=
    =5
    ∴CD=CB﹣BD=3
    ∴AD=
    =
    =3.
    【点睛】
    本题主要考查圆中的计算问题、 菱形以及相似三角形的判定与性质
    25、(1) A种钢笔每只15元 B种钢笔每只20元;
    (2) 方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种钢笔44支,购进B种钢笔46支;
    (3) 定价为33元或34元,最大利润是728元.
    【解析】
    (1)设A种钢笔每只x元,B种钢笔每支y元,
    由题意得 ,
    解得: ,
    答:A种钢笔每只15元,B种钢笔每支20元;
    (2)设购进A种钢笔z支,
    由题意得:,
    ∴42.4≤z<45,
    ∵z是整数
    z=43,44,
    ∴90-z=47,或46;
    ∴共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,
    方案二:购进A种钢笔44只,购进B种钢笔46只;
    (3)W=(30-20+a)(68-4a)=-4a²+28a+680=-4(a-)²+729,
    ∵-4<0,∴W有最大值,∵a为正整数,
    ∴当a=3,或a=4时,W最大,
    ∴W最大==-4×(3-)²+729=728,30+a=33,或34;
    答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元.
    26、见解析
    【解析】
    试题分析:依据题意,可通过证△ABC≌△EFD来得出AB=EF的结论,两三角形中,已知的条件有AB∥EF即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根据AAS判定两三角形全等解题.             
    证明:∵AB∥EF,
    ∴∠B=∠F.
    又∵BD=CF,
    ∴BC=FD.
    在△ABC与△EFD中,
    ∴△ABC≌△EFD(AAS),
    ∴AB=EF.
    27、(1)4;(2),;(3).
    【解析】
    (1)过点D作DE⊥x轴于点E,求出二次函数的顶点D的坐标,然后求出A、B、C的坐标,然后根据即可得出结论;
    (2)设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,证出,列表比例式,并找出关于t的方程即可得出结论;
    (3)判断点D在直线上,根据勾股定理求出DH,即可求出平移后的二次函数解析式,设点,,过点作于,于,轴于,根据勾股定理求出AG,联立方程即可求出m、n,从而求出结论.
    【详解】
    解:(1)过点D作DE⊥x轴于点E

    当时,得到,
    顶点,
    ∴DE=1
    由,得,;
    令,得;
    ,,,
    ,OC=3

    (2)如图1,设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,

    由翻折得:,



    轴,,



    由勾股定理得:,





    ,,

    解得:(不符合题意,舍去),;
    ,.
    (3)原抛物线的顶点在直线上,
    直线交轴于点,
    如图2,过点作轴于,

    由题意,平移后的新抛物线顶点为,解析式为,
    设点,,则,,,
    过点作于,于,轴于,




    、分别平分,,

    点在抛物线上,

    根据题意得:
    解得:

    【点睛】
    此题考查的是二次函数的综合大题,难度较大,掌握二次函数平移规律、二次函数的图象及性质、相似三角形的判定及性质和勾股定理是解决此题的关键.

    相关试卷

    江苏泰州地区达标名校2021-2022学年中考数学模拟预测试卷含解析: 这是一份江苏泰州地区达标名校2021-2022学年中考数学模拟预测试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,若M,二次函数等内容,欢迎下载使用。

    黄冈达标名校2021-2022学年中考数学模拟预测试卷含解析: 这是一份黄冈达标名校2021-2022学年中考数学模拟预测试卷含解析,共17页。试卷主要包含了的绝对值是等内容,欢迎下载使用。

    河南省周口市淮阳县重点达标名校2021-2022学年中考数学模拟预测题含解析: 这是一份河南省周口市淮阳县重点达标名校2021-2022学年中考数学模拟预测题含解析,共19页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map