黑龙江省哈尔滨尚志市2021-2022学年中考联考数学试卷含解析
展开
这是一份黑龙江省哈尔滨尚志市2021-2022学年中考联考数学试卷含解析,共18页。试卷主要包含了下列式子一定成立的是,tan30°的值为等内容,欢迎下载使用。
2021-2022中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知点为某封闭图形边界上一定点,动点从点出发,沿其边界顺时针匀速运动一周.设点运动的时间为,线段的长为.表示与的函数关系的图象大致如右图所示,则该封闭图形可能是( )A. B. C. D.2.实数a,b在数轴上对应的点的位置如图所示,则正确的结论是( )A.a+b<0 B.a>|﹣2| C.b>π D.3.计算3–(–9)的结果是( )A.12 B.–12 C.6 D.–64.下列式子一定成立的是( )A.2a+3a=6a B.x8÷x2=x4C. D.(﹣a﹣2)3=﹣5.某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x件,乙种奖品y件.依题意,可列方程组为( )A. B.C. D.6.如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是( )A. B. C. D.7.式子在实数范围内有意义,则x的取值范围是( )A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣28.tan30°的值为( )A. B. C. D.9.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )A. B. C. D.10.如图,△ABC是⊙O的内接三角形,∠BOC=120°,则∠A等于( )A.50° B.60° C.55° D.65°二、填空题(共7小题,每小题3分,满分21分)11.如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E,且AB=AC,若CD=2,则OE的长为_____.12.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.13.若一个圆锥的底面圆的周长是cm,母线长是,则该圆锥的侧面展开图的圆心角度数是_____.14.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为4时,阴影部分的面积为_____.15.如图,已知点E是菱形ABCD的AD边上的一点,连接BE、CE,M、N分别是BE、CE的中点,连接MN,若∠A=60°,AB=4,则四边形BCNM的面积为_____.16.如图,sin∠C,长度为2的线段ED在射线CF上滑动,点B在射线CA上,且BC=5,则△BDE周长的最小值为______.17.计算:___.三、解答题(共7小题,满分69分)18.(10分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:此次共调查了 名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为 度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.19.(5分)解不等式组.20.(8分)解方程(2x+1)2=3(2x+1)21.(10分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?22.(10分)已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.(1)求证:四边形FBGH是菱形;(2)求证:四边形ABCH是正方形.23.(12分)计算:; 解方程:24.(14分)如图所示,某小组同学为了测量对面楼AB的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼AB的高度.(精确到0.1米)(参考数据:sin10°≈0.17, cos10°≈0.98, tan10°≈0.18, ≈1.41, ≈1.73)
参考答案 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
解:分析题中所给函数图像,段,随的增大而增大,长度与点的运动时间成正比.段,逐渐减小,到达最小值时又逐渐增大,排除、选项,段,逐渐减小直至为,排除选项.故选.【点睛】本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.2、D【解析】
根据数轴上点的位置,可得a,b,根据有理数的运算,可得答案.【详解】a=﹣2,2<b<1. A.a+b<0,故A不符合题意;B.a<|﹣2|,故B不符合题意;C.b<1<π,故C不符合题意;D.<0,故D符合题意;故选D.【点睛】本题考查了实数与数轴,利用有理数的运算是解题关键.3、A【解析】
根据有理数的减法,即可解答.【详解】 故选A.【点睛】本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加上这个数的相反数.4、D【解析】
根据合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则进行计算即可.【详解】解:A:2a+3a=(2+3)a=5a,故A错误;B:x8÷x2=x8-2=x6,故B错误;C:=,故C错误;D:(-a-2)3=-a-6=-,故D正确.故选D.【点睛】本题考查了合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则.其中指数为分数的情况在初中阶段很少出现.5、A【解析】
根据题意设未知数,找到等量关系即可解题,见详解.【详解】解:设购买甲种奖品x件,乙种奖品y件.依题意,甲、乙两种奖品共20件,即x+y=20, 购买甲、乙两种奖品共花费了650元,即40x+30y=650,综上方程组为,故选A.【点睛】本题考查了二元一次方程组的列式,属于简单题,找到等量关系是解题关键.6、A【解析】试题分析:主视图是从正面看到的图形,只有选项A符合要求,故选A.考点:简单几何体的三视图.7、B【解析】
根据二次根式有意义的条件可得 ,再解不等式即可.【详解】解:由题意得:,解得:,
故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.8、D【解析】
直接利用特殊角的三角函数值求解即可.【详解】tan30°=,故选:D.【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.9、A【解析】
根据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决.【详解】由题意可得,,故选A.【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.10、B【解析】
由圆周角定理即可解答.【详解】∵△ABC是⊙O的内接三角形,∴∠A= ∠BOC,而∠BOC=120°,∴∠A=60°.故选B.【点睛】本题考查了圆周角定理,熟练运用圆周角定理是解决问题的关键. 二、填空题(共7小题,每小题3分,满分21分)11、【解析】
连接OA,所以∠OAC=90°,因为AB=AC,所以∠B=∠C,根据圆周角定理可知∠AOD=2∠B=2∠C,故可求出∠B和∠C的度数,在Rt△OAC中,求出OA的值,再在Rt△OAE中,求出OE的值,得到答案.【详解】连接OA,由题意可知∠OAC=90°,∵AB=AC,∴∠B=∠C,根据圆周角定理可知∠AOD=2∠B=2∠C,∵∠OAC=90°∴∠C+∠AOD=90°,∴∠C+2∠C=90°,故∠C=30°=∠B,∴在Rt△OAC中,sin∠C==,∴OC=2OA,∵OA=OD,∴OD+CD=2OA,∴CD=OA=2,∵OB=OA,∴∠OAE=∠B=30°,∴在Rt△OAE中,sin∠OAE==,∴OA=2OE,∴OE=OA=,故答案为.【点睛】本题主要考查了圆周角定理,角的转换,以及在直角三角形中的三角函数的运用,解本题的要点在于求出OA的值,从而利用直角三角形的三角函数的运用求出答案.12、2【解析】试题分析:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,ymin=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴ymin=2,13、【解析】
利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可【详解】∵圆锥的底面圆的周长是,∴圆锥的侧面扇形的弧长为 cm,,解得:故答案为.【点睛】此题考查弧长的计算,解题关键在于求得圆锥的侧面积14、4π﹣1【解析】分析:连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.详解:连接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,
∴∠COD=45°,
∴OC=CD=4,
∴阴影部分的面积=扇形BOC的面积-三角形ODC的面积
==4π-1.故答案是:4π-1.点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.15、3【解析】
如图,连接BD.首先证明△BCD是等边三角形,推出S△EBC=S△DBC=×42=4,再证明△EMN∽△EBC,可得=()2=,推出S△EMN=,由此即可解决问题.【详解】解:如图,连接BD.∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∠A=∠BCD=60°,AD∥BC,∴△BCD是等边三角形,∴S△EBC=S△DBC=×42=4,∵EM=MB,EN=NC,∴MN∥BC,MN=BC,∴△EMN∽△EBC,∴=()2=,∴S△EMN=,∴S阴=4-=3,故答案为3.【点睛】本题考查相似三角形的判定和性质、三角形的中位线定理、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16、.【解析】
作BK∥CF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D',则,此时△BD'E'的周长最小,作交CF于点F,可知四边形为平行四边形及四边形为矩形,在中,解直角三角形可知BH长,易得GK长,在Rt△BGK中,可得BG长,表示出△BD'E'的周长等量代换可得其值.【详解】解:如图,作BK∥CF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D',则,此时△BD'E'的周长最小,作交CF于点F.由作图知,四边形为平行四边形,由对称可知 ,即四边形为矩形在中, 在Rt△BGK中, BK=2,GK=6,∴BG2,∴△BDE周长的最小值为BE'+D'E'+BD'=KD'+D'E'+BD'=D'E'+BD'+GD'=D'E'+BG=2+2.故答案为:2+2.【点睛】本题考查了最短距离问题,涉及了轴对称、矩形及平行四边形的性质、解直角三角形、勾股定理,难度系数较大,利用两点之间线段最短及轴对称添加辅助线是解题的关键.17、【解析】
直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.【详解】原式.故答案为.【点睛】本题考查了实数运算,正确化简各数是解题的关键. 三、解答题(共7小题,满分69分)18、 (1)200;(2)见解析;(3)126°;(4)240人.【解析】
(1)根据文史类的人数以及文史类所占的百分比即可求出总人数(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数【详解】(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.【点睛】此题考查扇形统计图和条形统计图,看懂图中数据是解题关键19、x<﹣1.【解析】分析:按照解一元一次不等式组的一般步骤解答即可.详解:,由①得x≤1,由②得x<﹣1,∴原不等式组的解集是x<﹣1.点睛:“熟练掌握一元一次不等式组的解法”是正确解答本题的关键.20、x1=-,x2=1【解析】试题分析:分解因式得出(2x+1)(2x+1﹣3)=0,推出方程2x+1=0,2x+1﹣3=0,求出方程的解即可.试题解析:解:整理得:(2x+1)2-3(2x+1)=0,分解因式得:(2x+1)(2x+1﹣3)=0,即2x+1=0,2x+1﹣3=0,解得:x1=﹣,x2=1.点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大.21、;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【解析】
(1)根据按每千克元的市场价收购了这种苹果千克,此后每天每千克苹果价格会上涨元,进而得出天后每千克苹果的价格为元与的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【详解】根据题意知,;.当时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出与的函数关系是解题关键.22、(1)见解析 (2)见解析【解析】
(1)由三角形中位线知识可得DF∥BG,GH∥BF,根据菱形的判定的判定可得四边形FBGH是菱形;
(2)连结BH,交AC于点O,利用平行四边形的对角线互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根据对角线互相垂直平分的平行四边形得证四边形ABCH是菱形,再根据一组邻边相等的菱形即可求解.【详解】(1)∵点F、G是边AC的三等分点,
∴AF=FG=GC.
又∵点D是边AB的中点,
∴DH∥BG.
同理:EH∥BF.
∴四边形FBGH是平行四边形,
连结BH,交AC于点O,
∴OF=OG,
∴AO=CO,
∵AB=BC,
∴BH⊥FG,
∴四边形FBGH是菱形;
(2)∵四边形FBGH是平行四边形,
∴BO=HO,FO=GO.
又∵AF=FG=GC,
∴AF+FO=GC+GO,即:AO=CO.
∴四边形ABCH是平行四边形.
∵AC⊥BH,AB=BC,
∴四边形ABCH是正方形.【点睛】本题考查正方形的判定,菱形的判定和性质,三角形的中位线,熟练掌握正方形的判定和性质是解题的关键.23、(1)2 (2)【解析】
(1)原式第一项利用负指数幂法则计算,第二项利用特殊角的三角函数值化简,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算可得到结果;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)原式==2; (2)∴【点睛】本题考查了实数运算以及平方根的应用,正确掌握相关运算法则是解题的关键.24、30.3米.【解析】试题分析:过点D作DE⊥AB于点E,在Rt△ADE中,求出AE的长,在Rt△DEB中,求出BE的长即可得.试题解析:过点D作DE⊥AB于点E,在Rt△ADE中,∠AED=90°,tan∠1=, ∠1=30°,∴AE=DE× tan∠1=40×tan30°=40×≈40×1.73×≈23.1 在Rt△DEB中,∠DEB=90°,tan∠2=, ∠2=10°,∴BE=DE× tan∠2=40×tan10°≈40×0.18=7.2 ∴AB=AE+BE≈23.1+7.2=30.3米.
相关试卷
这是一份黑龙江省哈尔滨尚志市市级名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共26页。
这是一份黑龙江省哈尔滨尚志市市级名校2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,下列事件中必然发生的事件是等内容,欢迎下载使用。
这是一份2021-2022学年黑龙江省哈尔滨市尚志市中考数学仿真试卷含解析,共22页。试卷主要包含了如图,A(4,0),B等内容,欢迎下载使用。