终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    黑龙江省哈尔滨市南岗区第十七中学2022年中考数学最后冲刺模拟试卷含解析

    立即下载
    加入资料篮
    黑龙江省哈尔滨市南岗区第十七中学2022年中考数学最后冲刺模拟试卷含解析第1页
    黑龙江省哈尔滨市南岗区第十七中学2022年中考数学最后冲刺模拟试卷含解析第2页
    黑龙江省哈尔滨市南岗区第十七中学2022年中考数学最后冲刺模拟试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黑龙江省哈尔滨市南岗区第十七中学2022年中考数学最后冲刺模拟试卷含解析

    展开

    这是一份黑龙江省哈尔滨市南岗区第十七中学2022年中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了2cs 30°的值等于等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是(  )A BC D2.如图,在△ABC中,AC=BC,点DBC的延长线上,AE∥BD,点EDAC同侧,若∠CAE=118°,则∠B的大小为(  )A31° B32° C59° D62°3.tan45°的值等于(  )A B C D14.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有(  )A1 B2 C3 D45.若关于 x 的一元一次不等式组 无解,则 a 的取值范围是(    Aa≥3 Ba3 Ca≤3 Da36.2cos 30°的值等于(  )A1 B C D27.这四个数中,比小的数有(   )个.A B C D8.2016四川省甘孜州)如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将AOB绕点O顺时针旋转90°得到AOB,则A点运动的路径的长为(  )Aπ B C D9.如图,三角形纸片ABCAB10cmBC7cmAC6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则AED的周长为(  )A9cm B13cm C16cm D10cm10.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是(    )A B C D11.如图,在⊙O中,O为圆心,点ABC在圆上,若OA=AB,则∠ACB=(  )A15° B30° C45° D60°12.a0 时,下列关于幂的运算正确的是(    Aa0=1 Ba﹣1=﹣a C.(a2=﹣a2 D.(a23=a5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°BC=5,点AB的坐标分别为(﹣10),(﹣40),将△ABC沿x轴向左平移,当点C落在直线y=﹣2x﹣6上时,则点C沿x轴向左平移了_____个单位长度.14.如图,无人机在空中C处测得地面AB两点的俯角分别为60°45°,如果无人机距地面高度CD米,点ADB在同一水平直线上,则AB两点间的距离是_____米.(结果保留根号)15.分式方程-1=的解是x=________.16.如图,某海监船以20km/h的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为_____km17.规定用符号表示一个实数的整数部分,例如:.按此规定,的值为________18.如图是已知一条直角边和斜边作直角三角形的尺规作图过程已知:线段ab求作:.使得斜边ABbACa作法:如图.1)作射线AP,截取线段ABb2)以AB为直径,作O3)以点A为圆心,a的长为半径作弧交O于点C4)连接ACCB.即为所求作的直角三角形.请回答:该尺规作图的依据是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:|﹣|﹣2﹣π0+2cos45°    解方程: =1﹣20.(6分)某中学采用随机的方式对学生掌握安全知识的情况进行测评,并按成绩高低分成优、良、中、差四个等级进行统计,绘制了下面两幅尚不完整的统计图.请根据有关信息解答:        (1)接受测评的学生共有________人,扇形统计图中部分所对应扇形的圆心角为________°,并补全条形统计图;(2)若该校共有学生1200人,请估计该校对安全知识达到程度的人数;(3)测评成绩前五名的学生恰好3个女生和2个男生,现从中随机抽取2人参加市安全知识竞赛,请用树状图或列表法求出抽到1个男生和1个女生的概率.21.(6分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×18﹣10=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售xx10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?22.(8分)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度.用测角仪在A处测得雕塑顶端点C′的仰角为30°,再往雕塑方向前进4米至B处,测得仰角为45°.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值.)23.(8分)如图所示,在中,1)用尺规在边BC上求作一点P,使(不写作法,保留作图痕迹)2)连接AP为多少度时,AP平分24.(10分)计算:×2﹣÷+25.(10分)如图,已知ABCD是边长为3的正方形,点P在线段BC上,点G在线段AD上,PDPGDF⊥PG于点H,交AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连接EF1)求证:DFPG2)若PC1,求四边形PEFD的面积.26.(12分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款.某公司为奖励员工,购买了甲种商品20件,乙种商品x()件.(1)分别直接写出优惠方案一购买费用()、优惠方案二购买费用()与所买乙种商品x()之间的函数关系式;(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用wm之间的关系式;利用wm之间的关系式说明怎样购买最实惠.27.(12分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点GOC到点E,使OG=1ODOE=1OC,然后以OGOE为邻边作正方形OEFG,连接AGDE1)求证:DE⊥AG1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(α360°)得到正方形OE′F′G′,如图1在旋转过程中,当∠OAG′是直角时,求α的度数;若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.


    参考答案 一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】
    根据题意找到从左面看得到的平面图形即可.【详解】这个立体图形的左视图是
    故选:B【点睛】本题考查了简单组合体的三视图,解题的关键是掌握左视图所看的位置.2、A【解析】
    根据等腰三角形的性质得出∠B∠CAB,再利用平行线的性质解答即可.【详解】△ABC中,ACBC∴∠B∠CAB∵AE∥BD∠CAE118°∴∠B∠CAB∠CAE180°2∠B180°−118°解得:∠B31°故选A【点睛】此题考查等腰三角形的性质,关键是根据等腰三角形的性质得出∠B∠CAB3、D【解析】
    根据特殊角三角函数值,可得答案.【详解】解:tan45°=1故选D【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.4、B【解析】
    首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.【详解】解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=35y=7-x∵xy都是正整数,∴x=5时,y=4x=10时,y=1购买方案有2种.故选B【点睛】本题主要考查二元一次方程的应用,关键在于根据题意列方程.5、A【解析】
    先求出各不等式的解集,再与已知解集相比较求出 a 的取值范围.【详解】xa0 得,xa;由 1x﹣12x+1)得,x1此不等式组的解集是空集,a≥1故选:A【点睛】考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解答此题的关键.6、C【解析】分析:根据30°角的三角函数值代入计算即可.详解:2cos30°=2×=故选C点睛:此题主要考查了特殊角的三角函数值的应用,熟记30°45°60°角的三角函数值是解题关键.7、B【解析】
    比较这些负数的绝对值,绝对值大的反而小.【详解】﹣4﹣1这四个数中,比﹣2小的数是是﹣4.故选B.【点睛】本题主要考查负数大小的比较,解题的关键时负数比较大小时,绝对值大的数反而小.8、B【解析】试题分析:每个小正方形的边长都为1∴OA=4△AOB绕点O顺时针旋转90°得到△A′OB′∴∠AOA′=90°∴A点运动的路径的长为:=2π.故选B考点:弧长的计算;旋转的性质.9、A【解析】试题分析:由折叠的性质知,CD=DEBC=BE易求AE△AED的周长.解:由折叠的性质知,CD=DEBC=BE=7cm∵AB=10cmBC=7cm∴AE=AB﹣BE=3cm△AED的周长=AD+DE+AE=AC+AE=6+3=9cm).故选A点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10、A【解析】
    根据左视图的概念得出各选项几何体的左视图即可判断.【详解】解:A选项几何体的左视图为
    B选项几何体的左视图为
    C选项几何体的左视图为
    D选项几何体的左视图为
    故选:A【点睛】本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念.11、B【解析】
    根据题意得到△AOB是等边三角形,求出∠AOB的度数,根据圆周角定理计算即可.【详解】解:∵OA=ABOA=OB∴△AOB是等边三角形,∴∠AOB=60°∴∠ACB=30°故选B【点睛】本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.12、A【解析】
    直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案.【详解】A选项:a0=1,正确;B选项:a﹣1= ,故此选项错误;C选项:(﹣a2=a2,故此选项错误;D选项:(a23=a6,故此选项错误; 故选A【点睛】考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算, 正确掌握相关运算法则是解题关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】
    先根据勾股定理求得AC的长,从而得到C点坐标,然后根据平移的性质,将C点纵轴代入直线解析式求解即可得到答案.【详解】解:在Rt△ABC中,AB=﹣1﹣﹣1=3BC=5∴AC==1C的坐标为(﹣11).y=﹣2x﹣6=1时,x=﹣5∵﹣1﹣﹣5=1C沿x轴向左平移1个单位长度才能落在直线y=﹣2x﹣6上.故答案为1【点睛】本题主要考查平移的性质,解此题的关键在于先利用勾股定理求得相关点的坐标,然后根据平移的性质将其纵坐标代入直线函数式求解即可.14、1001+【解析】分析:如图,利用平行线的性质得∠A=60°∠B=45°,在Rt△ACD中利用正切定义可计算出AD=100,在Rt△BCD中利用等腰直角三角形的性质得BD=CD=100,然后计算AD+BD即可.详解:如图,无人机在空中C处测得地面AB两点的俯角分别为60°45°∴∠A=60°∠B=45°Rt△ACD中,∵tanA=∴AD==100Rt△BCD中,BD=CD=100∴AB=AD+BD=100+100=1001+).答:AB两点间的距离为1001+)米.故答案为1001+).点睛:本题考查了解直角三角形的应用仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.15、-5【解析】两边同时乘以(x+3(x-3),得6-x2+9=-x2-3x解得:x=-5检验:当x=-5时,(x+3(x-3)≠0,所以x=-5是分式方程的解,故答案为:-5.【点睛】本题考查了解分式方程,解题的关键是方程两边同时乘以最简公分母,切记要进行检验.16、40【解析】
    首先证明PBBC,推出C30°,可得PC2PA,求出PA即可解决问题.【详解】解:在Rt△PAB中,∵∠APB30°PB2AB由题意BC2ABPBBC∴∠CCPB∵∠ABPC+∠CPB60°∴∠C30°PC2PAPAAB•tan60°PC2×20×40km),故答案为40【点睛】本题考查解直角三角形的应用方向角问题,解题的关键是证明PBBC,推出C30°17、4【解析】
    根据规定,取的整数部分即可.【详解】整数部分为4.【点睛】本题考查无理数的估值,熟记方法是关键.18、等圆的半径相等,直径所对的圆周角是直角,三角形定义【解析】
    根据圆周角定理可判断ABC为直角三角形.【详解】根据作图得AB为直径,则利用圆周角定理可判断ACB=90°,从而得到ABC满足条件.故答案为:等圆的半径相等,直径所对的圆周角是直角,三角形定义.【点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、1﹣1;(2x=﹣1是原方程的根.【解析】
    1)直接化简二次根式进而利用零指数幂的性质以及特殊角三角函数值进而得出答案;2)直接去分母再解方程得出答案.【详解】1)原式=﹣2﹣1+2×=﹣﹣1+=﹣12)去分母得:3x=x﹣3+1解得:x=﹣1检验:当x=﹣1时,x﹣3≠0x=﹣1是原方程的根.【点睛】此题主要考查了实数运算和解分式方程,正确掌握解分式方程的方法是解题关键.20、 (1)80135°,条形统计图见解析;(2)825人;(3)图表见解析,(抽到11女)【解析】试题分析:(1)、根据的人数和百分比得出总人数,然后求出优所占的百分比,得出圆心角的度数;(2)、根据题意得出两种所占的百分比,从而得出全校的总数;(3)、根据题意利用列表法或者树状图法画出所有可能出现的情况,然后根据概率的计算法则求出概率.试题解析:(1)80135°; 条形统计图如图所示(2)该校对安全知识达到程度的人数:(人)3)解法一:列表如下:所有等可能的结果为20种,其中抽到一男一女的为12种,所以(抽到11女) 123121---21311121212---32122231323---13231112131---21212223212---解法二:画树状图如下:所有等可能的结果为20种,其中抽到一男一女的为12种,所以(抽到11女)21、11;(3;(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.【解析】试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1x﹣10=16,解方程即可求解;3)由于根据(1)得到x≤1,又一次销售xx10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到yx的函数关系式;3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.试题解析:(1)设一次购买x只,则30﹣0.1x﹣10=16,解得:x=1答:一次至少买1只,才能以最低价购买;3)当10x≤1时,y=[30﹣0.1x﹣10﹣13]x=,当x1时,y=16﹣13x=4x综上所述:3y==10x≤45时,yx的增大而增大,即当卖的只数越多时,利润更大.45x≤1时,yx的增大而减小,即当卖的只数越多时,利润变小.且当x=46时,y1=303.4,当x=1时,y3=3∴y1y3即出现了卖46只赚的钱比卖1只赚的钱多的现象.x=45时,最低售价为30﹣0.145﹣10=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.22、该雕塑的高度为(2+2)米.【解析】
    过点CCD⊥AB,设CD=x,由∠CBD=45°BD=CD=x米,根据tanA=列出关于x的方程,解之可得.【详解】解:如图,过点CCD⊥AB,交AB延长线于点DCD=x米,∵∠CBD=45°∠BDC=90°∴BD=CD=x米,∵∠A=30°AD=AB+BD=4+x∴tanA=,即解得:x=2+2答:该雕塑的高度为(2+2)米.【点睛】本题主要考查解直角三角形的应用-仰角俯角问题,解题的关键是根据题意构建直角三角形,并熟练掌握三角函数的应用.23、1)详见解析;(230°【解析】
    1)根据线段垂直平分线的作法作出AB的垂直平分线即可;2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得∠B的度数,可得答案.【详解】1)如图所示:分别以AB为圆心,大于AB长为半径画弧,两弧相交于点EF,作直线EF,交BC于点P∵EFAB的垂直平分线,∴PA=PBP即为所求.2)如图,连接AP∵AP是角平分线,∴∠PAC+∠PAB+∠B=90°∴3∠B=90°解得:∠B=30°时,AP平分【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.24、5- 【解析】分析:先化简各二次根式,再根据混合运算顺序依次计算可得.详解:原式=3×2--+=6--+=5-点睛:本题考查了二次根式的混合运算,熟练掌握混合运算的法则是解题的关键.25、1)证明见解析;(21.【解析】
    PM⊥AD,在四边形ABCD和四边形ABPMADPMDF⊥PG,得出∠GDH+∠DGH90°,推出∠ADF∠MPG;还有两个直角即可证明△ADF≌△MPG,从而得出对应边相等2)由已知得,DG2PC2△ADF≌△MPG得出DFPD;根据旋转,得出∠EPG90°PEPG从而得出四边形PEFD为平行四边形;根据勾股定理和等量代换求出边长DF的值;根据相似三角形得出对应边成比例求出GH的值,从而求出高PH 的值;最后根据面积公式得出【详解】解:(1)证明:四边形ABCD为正方形,∴ADAB四边形ABPM为矩形,∴ABPM∴ADPM∵DF⊥PG∴∠DHG90°∴∠GDH+∠DGH90°∵∠MGP+∠MPG90°∴∠GDH∠MPG△ADF△MPG∴△ADF≌△MPGASA),∴DFPG2)作PM⊥DGM,如图,∵PDPG∴MGMD四边形ABCD为矩形,∴PCDM为矩形,∴PCMD∴DG2PC2∵△ADF≌△MPGASA),∴DFPGPDPG∴DFPD线段PG绕点P逆时针旋转90°得到线段PE∴∠EPG90°PEPG∴PEPDDFDF⊥PG∴DF∥PEDF∥PE,且DFPE四边形PEFD为平行四边形,Rt△PCD中,PC1CD3∴PD∴DFPGPD四边形CDMP是矩形,∴PMCD3MDPC1∵PDPGPM⊥AD∴MGMD1DG2∵∠GDH∠MPG∠DHG∠PMG90°∴△DHG∽△PMG∴GH∴PHPG﹣GH四边形PEFD的面积=DF•PH×1【点睛】本题考查了平行四边形的面积、勾股定理、相似三角形判定、全等三角形性质,本题的关键是求边长和高的值26、1y1=80x+4400y2=64x+4800;(2)当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.【解析】1)根据方案即可列出函数关系式;2)根据题意建立wm之间的关系式,再根据一次函数的增减性即可得出答案.解:(1 得: 得:2 ,因为wm的一次函数,k=-4<0,                       所以w随的增加而减小,mm=20时,w取得最小值. 即按照方案一购买20件甲种商品;按照方案二购买20件乙种商品. 27、1)见解析;(130°150°的长最大值为,此时【解析】
    1)延长EDAG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;1在旋转过程中,∠OAG′成为直角有两种情况:α增大到90°过程中,当∠OAG′=90°时,α=30°α90°增大到180°过程中,当∠OAG′=90°时,α=150°当旋转到AOF′在一条直线上时,AF′的长最大,AF′=AO+OF′=+1,此时α=315°【详解】(1)如图1,延长EDAG于点H,O是正方形ABCD两对角线的交点,∴OA=ODOA⊥OD∵OG=OE△AOG△DOE中,∴△AOG≌△DOE∴∠AGO=∠DEO∵∠AGO+∠GAO=90°∴∠GAO+∠DEO=90°∴∠AHE=90°DE⊥AG(1)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α增大到90°过程中,∠OAG′=90°时,∵OA=OD=OG=OG′Rt△OAG′,sin∠AG′O==∴∠AG′O=30°∵OA⊥OD,OA⊥AG′∴OD∥AG′,∴∠DOG′=∠AG′O=30°∘α=30°(Ⅱ)α90°增大到180°过程中,∠OAG′=90°时,同理可求∠BOG′=30°∴α=180°−30°=150°.综上所述,∠OAG′=90°,α=30°150°.如图3,当旋转到A. OF′在一条直线上时,AF′的长最大,正方形ABCD的边长为1∴OA=OD=OC=OB=∵OG=1OD∴OG′=OG=∴OF′=1∴AF′=AO+OF′=+1∵∠COE′=45°此时α=315°.【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用. 

    相关试卷

    2024年黑龙江省哈尔滨市南岗区虹桥中学中考数学二模试卷(含解析):

    这是一份2024年黑龙江省哈尔滨市南岗区虹桥中学中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    黑龙江省哈尔滨市南岗区萧红中学2022年中考数学考试模拟冲刺卷含解析:

    这是一份黑龙江省哈尔滨市南岗区萧红中学2022年中考数学考试模拟冲刺卷含解析,共29页。试卷主要包含了单项式2a3b的次数是等内容,欢迎下载使用。

    黑龙江省哈尔滨市风华中学2022年中考数学最后冲刺模拟试卷含解析:

    这是一份黑龙江省哈尔滨市风华中学2022年中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了如图,l1∥l2,AF等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map