搜索
    上传资料 赚现金
    英语朗读宝

    黑龙江省鸡西市达标名校2021-2022学年中考数学押题试卷含解析

    黑龙江省鸡西市达标名校2021-2022学年中考数学押题试卷含解析第1页
    黑龙江省鸡西市达标名校2021-2022学年中考数学押题试卷含解析第2页
    黑龙江省鸡西市达标名校2021-2022学年中考数学押题试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黑龙江省鸡西市达标名校2021-2022学年中考数学押题试卷含解析

    展开

    这是一份黑龙江省鸡西市达标名校2021-2022学年中考数学押题试卷含解析,共20页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的主视图是  

    A. B. C. D.
    2.实数a,b在数轴上对应的点的位置如图所示,则正确的结论是(  )

    A.a+b<0 B.a>|﹣2| C.b>π D.
    3.如图所示的图形,是下面哪个正方体的展开图(  )

    A. B. C. D.
    4.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( )

    A.O1 B.O2 C.O3 D.O4
    5.下列运算正确的是(  )
    A.x4+x4=2x8 B.(x2)3=x5 C.(x﹣y)2=x2﹣y2 D.x3•x=x4
    6.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是( )
    A.a=2,b=3 B.a=-2,b=-3
    C.a=-2,b=3 D.a=2,b=-3
    7.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
    成绩






    人数
    2
    3
    2
    3
    4
    1
    则这些运动员成绩的中位数、众数分别为  
    A.、 B.、 C.、 D.、
    8.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是(  )

    A.①② B.①③④ C.①②③⑤ D.①②③④⑤
    9.如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,则AB的长为(  )

    A. B. C.1 D.
    10.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时, 那么下列结论成立的是( ).

    A.线段EF的长逐渐增大 B.线段EF的长逐渐减少
    C.线段EF的长不变 D.线段EF的长不能确定
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.计算:a3÷(﹣a)2=_____.
    12.一个多边形的每个内角都等于150°,则这个多边形是_____边形.
    13.二次函数的图象如图,若一元二次方程有实数根,则 的最大值为___

    14.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.
    15.分解因式=________,=__________.
    16.如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上.若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为_______.

    三、解答题(共8题,共72分)
    17.(8分)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.分别求出一次函数与反比例函数的表达式;过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.

    18.(8分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:
    等级
    非常了解
    比较了解
    只听说过
    不了解
    频数
    40
    120
    36
    4
    频率
    0.2
    m
    0.18
    0.02
    (1)本次问卷调查取样的样本容量为 ,表中的m值为 ;
    (2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;
    (3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?

    19.(8分)小强想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道I上某一观测点M处,测得亭A在点M的北偏东30°,亭B在点M的北偏东60°,当小明由点M沿小道I向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小强计算湖中两个小亭A、B之间的距离.

    20.(8分)先化简代数式,再从-2,2,0三个数中选一个恰当的数作为a的值代入求值.
    21.(8分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.

    (Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;
    (Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;
    (Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).
    22.(10分)已知抛物线y=x2+bx+c(b,c是常数)与x轴相交于A,B两点(A在B的左侧),与y轴交于点C.
    (1)当A(﹣1,0),C(0,﹣3)时,求抛物线的解析式和顶点坐标;
    (2)P(m,t)为抛物线上的一个动点.
    ①当点P关于原点的对称点P′落在直线BC上时,求m的值;
    ②当点P关于原点的对称点P′落在第一象限内,P′A2取得最小值时,求m的值及这个最小值.
    23.(12分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下

    如图(1)∠DAB=90°,求证:a2+b2=c2
    证明:连接DB,过点D作DF⊥BC交BC的延长线于点F,则DF=b-a
    S四边形ADCB=
    S四边形ADCB=
    ∴化简得:a2+b2=c2
    请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a2+b2=c2
    24.在矩形中,点在上,,⊥,垂足为.求证.若,且,求.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据主视图的定义判断即可.
    【详解】
    解:从正面看一个正方形被分成三部分,两条分别是虚线,故正确.
    故选:.
    【点睛】
    此题考查的是主视图的判断,掌握主视图的定义是解决此题的关键.
    2、D
    【解析】
    根据数轴上点的位置,可得a,b,根据有理数的运算,可得答案.
    【详解】
    a=﹣2,2<b<1.
    A.a+b<0,故A不符合题意;
    B.a<|﹣2|,故B不符合题意;
    C.b<1<π,故C不符合题意;
    D.<0,故D符合题意;
    故选D.
    【点睛】
    本题考查了实数与数轴,利用有理数的运算是解题关键.
    3、D
    【解析】
    根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.
    【详解】
    A. 因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:
    B. 因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;
    C .因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.
    D. 因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;
    故选D.
    【点睛】
    本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.
    4、A
    【解析】
    试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.

    考点:平面直角坐标系.
    5、D
    【解析】A. x4+x4=2x4 ,故错误;B. (x2)3=x6 ,故错误;C. (x﹣y)2=x2﹣2xy+y2 ,故错误; D. x3•x=x4
    ,正确,故选D.
    6、B
    【解析】
    分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.
    详解:(x+1)(x-3)
    =x2-3x+x-3
    =x2-2x-3
    所以a=2,b=-3,
    故选B.
    点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.
    7、C
    【解析】
    根据中位数和众数的概念进行求解.
    【详解】
    解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65, 1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80
    众数为:1.75;
    中位数为:1.1.
    故选C.
    【点睛】
    本题考查1.中位数;2.众数,理解概念是解题关键.
    8、C
    【解析】
    根据二次函数的性质逐项分析可得解.
    【详解】
    解:由函数图象可得各系数的关系:a<0,b<0,c>0,
    则①当x=1时,y=a+b+c<0,正确;
    ②当x=-1时,y=a-b+c>1,正确;
    ③abc>0,正确;
    ④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;
    ⑤对称轴x=-=-1,b=2a,又x=-1时,y=a-b+c>1,代入b=2a,则c-a>1,正确.
    故所有正确结论的序号是①②③⑤.
    故选C
    9、B
    【解析】
    由平行四边形性质得出AB=CD,AB∥CD,证出四边形ABDE是平行四边形,得出DE=DC=AB,再由平行线得出∠ECF=∠ABC,由三角函数求出CF长,再用勾股定理CE,即可得出AB的长.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥DC,AB=CD,
    ∵AE∥BD,
    ∴四边形ABDE是平行四边形,
    ∴AB=DE,
    ∴AB=DE=CD,即D为CE中点,
    ∵EF⊥BC,
    ∴∠EFC=90°,
    ∵AB∥CD,
    ∴∠ECF=∠ABC,
    ∴tan∠ECF=tan∠ABC=,
    在Rt△CFE中,EF=,tan∠ECF===,
    ∴CF=,
    根据勾股定理得,CE==,
    ∴AB=CE=,
    故选B.
    【点睛】
    本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=CE是解决问题的关键.
    10、C
    【解析】
    因为R不动,所以AR不变.根据三角形中位线定理可得EF= AR,因此线段EF的长不变.
    【详解】
    如图,连接AR,

    ∵E、F分别是AP、RP的中点,
    ∴EF为△APR的中位线,
    ∴EF= AR,为定值.
    ∴线段EF的长不改变.
    故选:C.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、a
    【解析】
    利用整式的除法运算即可得出答案.
    【详解】
    原式,
    .
    【点睛】
    本题考查的知识点是整式的除法,解题关键是先将变成,再进行运算.
    12、1
    【解析】
    根据多边形的内角和定理:180°•(n-2)求解即可.
    【详解】
    由题意可得:180°•(n-2)=150°•n,
    解得n=1.
    故多边形是1边形.
    13、3
    【解析】
    试题解析::∵抛物线的开口向上,顶点纵坐标为-3,
    ∴a>1.
    -=-3,即b2=12a,
    ∵一元二次方程ax2+bx+m=1有实数根,
    ∴△=b2-4am≥1,即12a-4am≥1,即12-4m≥1,解得m≤3,
    ∴m的最大值为3,
    14、y=2(x+3)2+1
    【解析】
    由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.
    【详解】
    抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.
    故答案为:y=2(x+3)2+1
    【点睛】
    本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
    15、
    【解析】
    此题考查因式分解

    答案
    点评:利用提公因式、平方差公式、完全平方公式分解因式
    16、
    【解析】
    根据抛物线的解析式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积.
    【详解】
    抛物线的对称轴为x=-.
    ∵抛物线y=-x2-1x+c经过点B、C,且点B在y轴上,BC∥x轴,
    ∴点C的横坐标为-1.
    ∵四边形ABCD为菱形,
    ∴AB=BC=AD=1,
    ∴点D的坐标为(-2,0),OA=2.
    在Rt△ABC中,AB=1,OA=2,
    ∴OB==4,
    ∴S菱形ABCD=AD•OB=1×4=3.
    故答案为3.
    【点睛】
    本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键.

    三、解答题(共8题,共72分)
    17、(1)反比例函数解析式为y=,一次函数解析式为y=x+2;(2)△ACB的面积为1.
    【解析】
    (1)将点A坐标代入y=可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;
    (2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.
    【详解】
    解:(1)将点A(2,4)代入y=,得:m=8,则反比例函数解析式为y=,
    当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),
    将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,
    解得:,则一次函数解析式为y=x+2;
    (2)由题意知BC=2,则△ACB的面积=×2×1=1.
    【点睛】
    本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键.
    18、 (1)200;0.6(2)非常了解20%,比较了解60%; 72°;(3) 900人
    【解析】
    (1)根据非常了解的频数与频率即可求出本次问卷调查取样的样本容量,用1减去各等级的频率即可得到m值;(2)根据非常了解的频率、比较了解的频率即可求出其百分比,与非常了解的圆心角度数;(3)用全校人数乘以非常了解的频率即可.
    【详解】
    解:(1) 本次问卷调查取样的样本容量为40÷0.2=200;m=1-0.2-0.18-0.02=0.6
    (2)非常了解20%,比较了解60%;
    非常了解的圆心角度数:360°×20%=72°

    (3)1500×60%=900(人)
    答:“比较了解”垃圾分类知识的人数约为900人.
    【点睛】
    此题主要考查扇形统计图的应用,解题的关键是根据频数与频率求出调查样本的容量.
    19、1m
    【解析】
    连接AN、BQ,过B作BE⊥AN于点E.在Rt△AMN和在Rt△BMQ中,根据三角函数就可以求得AN,BQ,求得NQ,AE的长,在直角△ABE中,依据勾股定理即可求得AB的长.
    【详解】
    连接AN、BQ,

    ∵点A在点N的正北方向,点B在点Q的正北方向,
    ∴AN⊥l,BQ⊥l,
    在Rt△AMN中:tan∠AMN=,
    ∴AN=1,
    在Rt△BMQ中:tan∠BMQ=,
    ∴BQ=30,
    过B作BE⊥AN于点E,
    则BE=NQ=30,
    ∴AE=AN-BQ=30,
    在Rt△ABE中,
    AB2=AE2+BE2,
    AB2=(30)2+302,
    ∴AB=1.
    答:湖中两个小亭A、B之间的距离为1米.
    【点睛】
    本题考查勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
    20、,2
    【解析】
    试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a的值时,不能使原分式没有意义,即a不能取2和-2.
    试题解析:原式=·=
    当a=0时,原式==2.
    考点:分式的化简求值.
    21、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).
    【解析】
    (1)设OD为x,则BD=AD=3,在RT△ODA中应用勾股定理即可求解;
    (1)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;
    (3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.
    【详解】
    (Ⅰ)设OD为x,
    ∵点A(3,0),点B(0,),
    ∴AO=3,BO=
    ∴AB=6
    ∵折叠
    ∴BD=DA
    在Rt△ADO中,OA1+OD1=DA1.
    ∴9+OD1=(﹣OD)1.
    ∴OD=
    ∴D(0,)
    (Ⅱ)∵折叠
    ∴∠BDC=∠CDO=90°
    ∴CD∥OA
    ∴且BD=AC,

    ∴BD=﹣18
    ∴OD=﹣(﹣18)=18﹣
    ∵tan∠ABO=,
    ∴∠ABC=30°,即∠BAO=60°
    ∵tan∠ABO=,
    ∴CD=11﹣6
    ∴D(11﹣6,11﹣18)
    (Ⅲ)如图:过点C作CE⊥AO于E

    ∵CE⊥AO
    ∴OE=1,且AO=3
    ∴AE=1,
    ∵CE⊥AO,∠CAE=60°
    ∴∠ACE=30°且CE⊥AO
    ∴AC=1,CE=
    ∵BC=AB﹣AC
    ∴BC=6﹣1=4
    若点B'落在A点右边,
    ∵折叠
    ∴BC=B'C=4,CE=,CE⊥OA
    ∴B'E=
    ∴OB'=1+
    ∴B'(1+,0)
    若点B'落在A点左边,
    ∵折叠
    ∴BC=B'C=4,CE=,CE⊥OA
    ∴B'E=
    ∴OB'=﹣1
    ∴B'(1﹣,0)
    综上所述:B'(1+,0),(1﹣,0)
    【点睛】
    本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.
    22、(1)抛物线的解析式为y=x3﹣3x﹣1,顶点坐标为(1,﹣4);(3)①m=;②P′A3取得最小值时,m的值是,这个最小值是.
    【解析】
    (1)根据A(﹣1,3),C(3,﹣1)在抛物线y=x3+bx+c(b,c是常数)的图象上,可以求得b、c的值;
    (3)①根据题意可以得到点P′的坐标,再根据函数解析式可以求得点B的坐标,进而求得直线BC的解析式,再根据点P′落在直线BC上,从而可以求得m的值;
    ②根据题意可以表示出P′A3,从而可以求得当P′A3取得最小值时,m的值及这个最小值.
    【详解】
    解:(1)∵抛物线y=x3+bx+c(b,c是常数)与x轴相交于A,B两点,与y轴交于点C,A(﹣1,3),C(3,﹣1),∴,解得:,∴该抛物线的解析式为y=x3﹣3x﹣1.
    ∵y=x3﹣3x﹣1=(x﹣1)3﹣4,∴抛物线的顶点坐标为(1,﹣4);
    (3)①由P(m,t)在抛物线上可得:t=m3﹣3m﹣1.
    ∵点P和P′关于原点对称,∴P′(﹣m,﹣t),当y=3时,3=x3﹣3x﹣1,解得:x1=﹣1,x3=1,由已知可得:点B(1,3).
    ∵点B(1,3),点C(3,﹣1),设直线BC对应的函数解析式为:y=kx+d,,解得:,∴直线BC的直线解析式为y=x﹣1.
    ∵点P′落在直线BC上,∴﹣t=﹣m﹣1,即t=m+1,∴m3﹣3m﹣1=m+1,解得:m=;
    ②由题意可知,点P′(﹣m,﹣t)在第一象限,∴﹣m>3,﹣t>3,∴m<3,t<3.
    ∵二次函数的最小值是﹣4,∴﹣4≤t<3.
    ∵点P(m,t)在抛物线上,∴t=m3﹣3m﹣1,∴t+1=m3﹣3m,过点P′作P′H⊥x轴,H为垂足,有H(﹣m,3).
    又∵A(﹣1,3),则P′H3=t3,AH3=(﹣m+1)3.在Rt△P′AH中,P′A3=AH3+P′H3,∴P′A3=(﹣m+1)3+t3=m3﹣3m+1+t3=t3+t+4=(t+)3+,∴当t=﹣时,P′A3有最小值,此时P′A3=,∴=m3﹣3m﹣1,解得:m=.
    ∵m<3,∴m=,即P′A3取得最小值时,m的值是,这个最小值是.

    【点睛】
    本题是二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.
    23、见解析.
    【解析】
    首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证.
    【详解】
    证明:连结BD,过点B作DE边上的高BF,则BF=b-a,

    ∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,
    又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),
    ∴ab+b1+ab=ab+c1+a(b-a),
    ∴a1+b1=c1.
    【点睛】
    此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.
    24、(1)证明见解析;(2)1
    【解析】
    分析:(1)利用“AAS”证△ADF≌△EAB即可得;
    (2)由∠ADF+∠FDC=90°、∠DAF+∠ADF=90°得∠FDC=∠DAF=30°,据此知AD=2DF,根据DF=AB可得答案.
    详解:(1)证明:在矩形ABCD中,∵AD∥BC,
    ∴∠AEB=∠DAF,
    又∵DF⊥AE,
    ∴∠DFA=90°,
    ∴∠DFA=∠B,
    又∵AD=EA,
    ∴△ADF≌△EAB,
    ∴DF=AB.
    (2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,
    ∴∠FDC=∠DAF=30°,
    ∴AD=2DF,
    ∵DF=AB,
    ∴AD=2AB=1.
    点睛:本题主要考查矩形的性质,解题的关键是掌握矩形的性质和全等三角形的判定与性质及直角三角形的性质.

    相关试卷

    黑龙江省庆安县重点达标名校2021-2022学年中考押题数学预测卷含解析:

    这是一份黑龙江省庆安县重点达标名校2021-2022学年中考押题数学预测卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列各式计算正确的是等内容,欢迎下载使用。

    黑龙江省鸡西市达标名校2021-2022学年中考联考数学试卷含解析:

    这是一份黑龙江省鸡西市达标名校2021-2022学年中考联考数学试卷含解析,共23页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。

    黑龙江省鸡西市达标名校2021-2022学年中考猜题数学试卷含解析:

    这是一份黑龙江省鸡西市达标名校2021-2022学年中考猜题数学试卷含解析,共19页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map