搜索
    上传资料 赚现金
    英语朗读宝

    黑龙江省鸡西市第十六中学2022年中考数学押题试卷含解析

    黑龙江省鸡西市第十六中学2022年中考数学押题试卷含解析第1页
    黑龙江省鸡西市第十六中学2022年中考数学押题试卷含解析第2页
    黑龙江省鸡西市第十六中学2022年中考数学押题试卷含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黑龙江省鸡西市第十六中学2022年中考数学押题试卷含解析

    展开

    这是一份黑龙江省鸡西市第十六中学2022年中考数学押题试卷含解析,共18页。试卷主要包含了已知A样本的数据如下,一组数据等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.用尺现作图的方法在一个平行四边形内作菱形,下列作法错误的是 ( )
    A. B. C. D.
    2.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为( )

    A.160米 B.(60+160) C.160米 D.360米
    3.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是( )
    A.平均数 B.标准差 C.中位数 D.众数
    4.下列立体图形中,主视图是三角形的是( )
    A. B. C. D.
    5.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:
    ①若C,O两点关于AB对称,则OA=;
    ②C,O两点距离的最大值为4;
    ③若AB平分CO,则AB⊥CO;
    ④斜边AB的中点D运动路径的长为π.
    其中正确的是(  )

    A.①② B.①②③ C.①③④ D.①②④
    6.一组数据:6,3,4,5,7的平均数和中位数分别是 ( )
    A.5,5 B.5,6 C.6,5 D.6,6
    7.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是( )
    A.点A在⊙O内 B.点A在⊙O上 C.点A在⊙O外 D.内含
    8.小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )

    A. B. C. D.
    9.已知点,为是反比例函数上一点,当时,m的取值范围是( )
    A. B. C. D.
    10.2019年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是(  )
    A.32,31 B.31,32 C.31,31 D.32,35
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.

    12.如图,AB为半圆的直径,且AB=2,半圆绕点B顺时针旋转40°,点A旋转到A′的位置,则图中阴影部分的面积为_____(结果保留π).

    13.甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是__km/h.

    14.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长度为_____

    15.已知,,,是成比例的线段,其中,,,则_______.
    16.如图,若正五边形和正六边形有一边重合,则∠BAC=_____.

    17.分式方程=1的解为_____
    三、解答题(共7小题,满分69分)
    18.(10分)菱形的边长为5,两条对角线、相交于点,且,的长分别是关于的方程的两根,求的值.

    19.(5分)如图,∠MON的边OM上有两点A、B在∠MON的内部求作一点P,使得点P到∠MON的两边的距离相等,且△PAB的周长最小.(保留作图痕迹,不写作法)

    20.(8分)新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.
    (1)求w与x之间的函数关系式;
    (2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
    (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?
    21.(10分)某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查.在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如下图所示:
    本次调查人数共 人,使用过共享单车的有 人;请将条形统计图补充完整;如果这个小区大约有3000名居民,请估算出每天的骑行路程在2~4千米的有多少人?
    22.(10分)如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30 cm,∠OBC=45°,求AB的长度.(结果精确到0.1 cm)

    23.(12分)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.
    (1)求抛物线的解析式;
    (2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;
    (3)平行于DE的一条动直线l与直线BC相较于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标.

    24.(14分)计算:()-1+()0+-2cos30°.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    根据菱形的判定方法一一判定即可
    【详解】
    作的是角平分线,只能说明四边形ABCD是平行四边形,故A符合题意
    B、作的是连接AC,分别做两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,能得到AB=BC,AD=CD,又AB∥CD,所以四边形ABCD为菱形,B不符合题意
    C、由辅助线可知AD=AB=BC,又AD∥BC,所以四边形ABCD为菱形,C不符合题意
    D、作的是BD垂直平分线,由平行四边形中心对称性质可知AC与BD互相平分且垂直,得到四边形ABCD是菱形,D不符合题意
    故选A
    【点睛】
    本题考查平行四边形的判定,能理解每个图的作法是本题解题关键
    2、C
    【解析】
    过点A作AD⊥BC于点D.根据三角函数关系求出BD、CD的长,进而可求出BC的长.
    【详解】
    如图所示,过点A作AD⊥BC于点D.

    在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD∙tan30°=120×=m;
    在Rt△ADC中,∠DAC=60°,CD=AD∙tan60°=120×=m.
    ∴BC=BD+DC=m.
    故选C.
    【点睛】
    本题主要考查三角函数,解答本题的关键是熟练掌握三角函数的有关知识,并牢记特殊角的三角函数值.
    3、B
    【解析】
    试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:
    设样本A中的数据为xi,则样本B中的数据为yi=xi+2,
    则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.
    故选B.
    考点:统计量的选择.
    4、A
    【解析】
    考查简单几何体的三视图.根据从正面看得到的图形是主视图,可得图形的主视图
    【详解】
    A、圆锥的主视图是三角形,符合题意;
    B、球的主视图是圆,不符合题意;
    C、圆柱的主视图是矩形,不符合题意;
    D、正方体的主视图是正方形,不符合题意.
    故选A.
    【点睛】
    主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看
    5、D
    【解析】
    分析:①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以
    ②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;
    ③如图2,当∠ABO=30°时,易证四边形OACB是矩形,此时AB与CO互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;
    ④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.
    详解:在Rt△ABC中,∵


    ①若C.O两点关于AB对称,如图1,
    ∴AB是OC的垂直平分线,

    所以①正确;
    ②如图1,取AB的中点为E,连接OE、CE,


    当OC经过点E时,OC最大,
    则C.O两点距离的最大值为4;
    所以②正确;
    ③如图2,当时,

    ∴四边形AOBC是矩形,
    ∴AB与OC互相平分,
    但AB与OC的夹角为不垂直,
    所以③不正确;
    ④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的

    则:
    所以④正确;
    综上所述,本题正确的有:①②④;
    故选D.
    点睛:属于三角形的综合体,考查了直角三角形的性质,直角三角形斜边上中线的性质,轴对称的性质,弧长公式等,熟练掌握直角三角形斜边的中线等于斜边的一半是解题的关键.
    6、A
    【解析】
    试题分析:根据平均数的定义列式计算,再根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答.
    平均数为:×(6+3+4+1+7)=1,
    按照从小到大的顺序排列为:3,4,1,6,7,所以,中位数为:1.
    故选A.
    考点:中位数;算术平均数.
    7、A
    【解析】
    直接利用点与圆的位置关系进而得出答案.
    【详解】
    解:∵⊙O的半径为5cm,OA=4cm,
    ∴点A与⊙O的位置关系是:点A在⊙O内.
    故选A.
    【点睛】
    此题主要考查了点与圆的位置关系,正确①点P在圆外⇔d>r,②点P在圆上⇔d=r,③点P在圆内⇔d<r是解题关键.
    8、C
    【解析】
    正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:
    【详解】
    正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:
    A、“预”的对面是“考”,“祝”的对面是“成”,“中”的对面是“功”,故本选项错误;
    B、“预”的对面是“功”,“祝”的对面是“考”,“中”的对面是“成”,故本选项错误;
    C、“预”的对面是“中”,“祝”的对面是“考”,“成”的对面是“功”,故本选项正确;
    D、“预”的对面是“中”,“祝”的对面是“成”,“考”的对面是“功”,故本选项错误.
    故选C
    【点睛】
    考核知识点:正方体的表面展开图.
    9、A
    【解析】
    直接把n的值代入求出m的取值范围.
    【详解】
    解:∵点P(m,n),为是反比例函数y=-图象上一点,
    ∴当-1≤n<-1时,
    ∴n=-1时,m=1,n=-1时,m=1,
    则m的取值范围是:1≤m<1.
    故选A.
    【点睛】
    此题主要考查了反比例函数图象上点的坐标性质,正确把n的值代入是解题关键.
    10、C
    【解析】
    分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
    解答:解:从小到大排列此数据为:30、1、1、1、32、34、35,数据1出现了三次最多为众数,1处在第4位为中位数.所以本题这组数据的中位数是1,众数是1.
    故选C.

    二、填空题(共7小题,每小题3分,满分21分)
    11、54
    【解析】
    试题解析:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;
    第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,
    共有10个正方体,
    ∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,
    ∴搭成的大正方体的共有4×4×4=64个小正方体,
    ∴至少还需要64-10=54个小正方体.
    【点睛】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×4×4=64个小正方体,即可得出答案.本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.
    12、
    【解析】
    【分析】根据题意可得出阴影部分的面积等于扇形ABA′的面积加上半圆面积再减去半圆面积.
    【详解】∵S阴影=S扇形ABA′+S半圆-S半圆
    =S扇形ABA′
    =
    =,
    故答案为.
    【点睛】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式且能准确识图是解题的关键.
    13、3.6
    【解析】
    分析:根据题意,甲的速度为6km/h,乙出发后2.5小时两人相遇,可以用方程思想解决问题.
    详解:由题意,甲速度为6km/h.当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇.
    设乙的速度为xkm/h
    4.5×6+2.5x=36
    解得x=3.6
    故答案为3.6
    点睛:本题为一次函数实际应用问题,考查一次函数图象在实际背景下所代表的意义.解答这类问题时,也可以通过构造方程解决问题.
    14、
    【解析】
    分析题意,如图所示,连接BF,由翻折变换可知,BF⊥AE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的长度即可
    【详解】
    如图,连接BF.

    ∵△AEF是由△ABE沿AE折叠得到的,
    ∴BF⊥AE,BE=EF.
    ∵BC=6,点E为BC的中点,
    ∴BE=EC=EF=3
    根据勾股定理有AE=AB+BE
    代入数据求得AE=5
    根据三角形的面积公式
    得BH=
    即可得BF=
    由FE=BE=EC,
    可得∠BFC=90°
    再由勾股定理有BC-BF=CF
    代入数据求得CF=
    故答案为
    【点睛】
    此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质
    15、
    【解析】
    如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.
    【详解】
    已知a,b,c,d是成比例线段,
    根据比例线段的定义得:ad=cb,
    代入a=3,b=2,c=6,
    解得:d=4,
    则d=4cm.
    故答案为:4
    【点睛】
    本题主要考查比例线段的定义.要注意考虑问题要全面.
    16、132°
    【解析】
    解:∵正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案为132°.
    17、x=0.1
    【解析】
    分析:方程两边都乘以最简公分母,化为整式方程,然后解方程,再进行检验.
    详解:方程两边都乘以2(x2﹣1)得,
    8x+2﹣1x﹣1=2x2﹣2,
    解得x1=1,x2=0.1,
    检验:当x=0.1时,x﹣1=0.1﹣1=﹣0.1≠0,
    当x=1时,x﹣1=0,
    所以x=0.1是方程的解,
    故原分式方程的解是x=0.1.
    故答案为:x=0.1
    点睛:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.

    三、解答题(共7小题,满分69分)
    18、.
    【解析】
    由题意可知:菱形ABCD的边长是5,则AO2+BO2=25,则再根据根与系数的关系可得:AO+BO=−(2m−1),AO∙BO=m2+3;代入AO2+BO2中,得到关于m的方程后,即可求得m的值.
    【详解】
    解:∵,的长分别是关于的方程的两根,
    设方程的两根为和,可令,,
    ∵四边形是菱形,
    ∴,
    在中:由勾股定理得:,
    ∴,则,
    由根与系数的关系得:,,
    ∴,
    整理得:,
    解得:,
    又∵,
    ∴,解得,
    ∴.
    【点睛】
    此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.
    19、详见解析
    【解析】
    作∠MON的角平分线OT,在ON上截取OA′,使得OA′=OA,连接BA′交OT于点P,点P即为所求.
    【详解】
    解:如图,点P即为所求.

    【点睛】
    本题主要考查作图-复杂作图,利用了角平分线的性质,难点在于利用轴对称求最短路线的问题.
    20、(1)w=﹣2x2+480x﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润1元(3)销售单价应定为100元
    【解析】
    (1)用每件的利润乘以销售量即可得到每天的销售利润,即 然后化为一般式即可;
    (2)把(1)中的解析式进行配方得到顶点式然后根据二次函数的最值问题求解;
    (3)求所对应的自变量的值,即解方程然后检验即可.
    【详解】
    (1)

    w与x的函数关系式为:
    (2)

    ∴当时,w有最大值.w最大值为1.
    答:销售单价定为120元时,每天销售利润最大,最大销售利润1元.
    (3)当时,
    解得:
    ∵想卖得快,
    不符合题意,应舍去.
    答:销售单价应定为100元.
    21、(1)200,90 (2)图形见解析(3)750人
    【解析】
    试题分析:(1)用对于共享单车不了解的人数20除以对于共享单车不了解的人数所占得百分比即可得本次调查人数;用总人数乘以使用过共享单车人数所占的百分比即可得使用过共享单车的人数;(2)用使用过共享单车的总人数减去0~2,4~6,6~8的人数,即可得2~4的人数,再图上画出即可;(3)用3000乘以骑行路程在2~4千米的人数所占的百分比即可得每天的骑行路程在2~4千米的人数.
    试题解析:
    (1)20÷10%=200,
    200×(1-45%-10%)=90 ;
    (2)90-25-10-5=50,

    补全条形统计图
    (3)=750(人)
    答: 每天的骑行路程在2~4千米的大约750人
    22、37
    【解析】
    试题分析:过点作交于点.构造直角三角形,在中,计算出,在中, 计算出.
    试题解析:如图所示:过点作交于点.

    在中,



    又∵在中,


    答:的长度为
    23、 (1)、y=-+x+4;(2)、不存在,理由见解析.
    【解析】
    试题分析:(1)、首先设抛物线的解析式为一般式,将点C和点A意见对称轴代入求出函数解析式;(2)、本题利用假设法来进行证明,假设存在这样的点,然后设出点F的坐标求出FH和FG的长度,然后得出面积与t的函数关系式,根据方程无解得出结论.
    试题解析:(1)、∵抛物线y=a+bx+c(a≠0)过点C(0,4) ∴C=4①
    ∵-=1 ∴b=-2a② ∵抛物线过点A(-2,0) ∴4a-2b+c="0" ③
    由①②③解得:a=-,b=1,c=4 ∴抛物线的解析式为:y=-+x+4
    (2)、不存在 假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G. 设点F的坐标为(t,+t+4),其中0<t<4 则FH=+t+4 FG=t
    ∴△OBF的面积=OB·FH=×4×(+t+4)=-+2t+8 △OFC的面积=OC·FG=2t
    ∴四边形ABFC的面积=△AOC的面积+△OBF的面积+△OFC的面积=-+4t+12
    令-+4t+12=17 即-+4t-5=0 △=16-20=-4<0 ∴方程无解
    ∴不存在满足条件的点F

    考点:二次函数的应用
    24、4+2.
    【解析】
    原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.
    【详解】
    原式=3+1+3-2×
    =4+2.

    相关试卷

    2023年黑龙江省鸡西市虎林实验中学中考数学模拟试卷(含解析):

    这是一份2023年黑龙江省鸡西市虎林实验中学中考数学模拟试卷(含解析),共33页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年黑龙江省鸡西市虎林实验中学中考数学三模试卷(含解析):

    这是一份2023年黑龙江省鸡西市虎林实验中学中考数学三模试卷(含解析),共31页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2023年黑龙江省鸡西市虎林实验中学中考数学二模试卷(含解析):

    这是一份2023年黑龙江省鸡西市虎林实验中学中考数学二模试卷(含解析),共30页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map