湖南省长沙市青雅丽发中学2022年中考数学全真模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠AFG的值为( )
A. B. C. D.
2.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( ).
A. B. C. D.
3.下列说法正确的是( )
A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件
B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是,,则甲的射击成绩较稳定
C.“明天降雨的概率为”,表示明天有半天都在降雨
D.了解一批电视机的使用寿命,适合用普查的方式
4.在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是,设金色纸边的宽为,那么满足的方程是( )
A. B.
C. D.
5.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )
A. B. C. D.
6.某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x件,乙种奖品y件.依题意,可列方程组为( )
A. B.
C. D.
7.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于( )
A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b
8.下列图形中,既是轴对称图形又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
9.下列说法中,错误的是( )
A.两个全等三角形一定是相似形 B.两个等腰三角形一定相似
C.两个等边三角形一定相似 D.两个等腰直角三角形一定相似
10.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是( )
A.27° B.34° C.36° D.54°
11.如图的几何体中,主视图是中心对称图形的是( )
A. B. C. D.
12.利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.计算:___________.
14.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.
15.在一个不透明的袋子里装有一个黑球和两个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是__________.
16.计算:.
17.一个圆锥的母线长15CM.高为9CM.则侧面展开图的圆心角________。
18.函数的自变量的取值范围是 .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:
调查了________名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同学,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
20.(6分)已知关于的二次函数
(1)当时,求该函数图像的顶点坐标.
(2)在(1)条件下,为该函数图像上的一点,若关于原点的对称点也落在该函数图像上,求的值
(3)当函数的图像经过点(1,0)时,若是该函数图像上的两点,试比较与的大小.
21.(6分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.
(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;
(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.
22.(8分)如图,AB为⊙O的直径,D为⊙O上一点,以AD为斜边作△ADC,使∠C=90°,∠CAD=∠DAB求证:DC是⊙O的切线;若AB=9,AD=6,求DC的长.
23.(8分)关于x的一元二次方程mx2+(3m﹣2)x﹣6=1.
(1)当m为何值时,方程有两个不相等的实数根;
(2)当m为何整数时,此方程的两个根都为负整数.
24.(10分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.
25.(10分)当x取哪些整数值时,不等式与4﹣7x<﹣3都成立?
26.(12分)一次函数的图象经过点和点,求一次函数的解析式.
27.(12分)如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.
(1)求证:DE=DB:
(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;
(3)若BD=6,DF=4,求AD的长
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.由题意可得:DE=1,∠HDE=60°,△BCD是等边三角形,即可求DH的长,HE的长,AE的长,
NE的长,EF的长,则可求sin∠AFG的值.
【详解】
解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.
∵四边形ABCD是菱形,AB=4,∠DAB=60°,
∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB
∴∠HDE=∠DAB=60°,
∵点E是CD中点
∴DE=CD=1
在Rt△DEH中,DE=1,∠HDE=60°
∴DH=1,HE=
∴AH=AD+DH=5
在Rt△AHE中,AE==1
∴AN=NE=,AE⊥GF,AF=EF
∵CD=BC,∠DCB=60°
∴△BCD是等边三角形,且E是CD中点
∴BE⊥CD,
∵BC=4,EC=1
∴BE=1
∵CD∥AB
∴∠ABE=∠BEC=90°
在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.
∴EF=
由折叠性质可得∠AFG=∠EFG,
∴sin∠EFG= sin∠AFG = ,故选B.
【点睛】
本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.
2、B
【解析】
朝上的数字为偶数的有3种可能,再根据概率公式即可计算.
【详解】
依题意得P(朝上一面的数字是偶数)=
故选B.
【点睛】
此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.
3、B
【解析】
利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断.
【详解】
解: A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;
B、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,此选项正确;
C、“明天降雨的概率为”,表示明天有可能降雨,此选项错误;
D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;
故选B.
【点睛】
本题考查方差;全面调查与抽样调查;随机事件;概率的意义,掌握基本概念是解题关键.
4、B
【解析】
根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.
【详解】
由题意,设金色纸边的宽为,
得出方程:(80+2x)(50+2x)=5400,
整理后得:
故选:B.
【点睛】
本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.
5、C
【解析】
A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选C.
6、A
【解析】
根据题意设未知数,找到等量关系即可解题,见详解.
【详解】
解:设购买甲种奖品x件,乙种奖品y件.依题意,甲、乙两种奖品共20件,即x+y=20, 购买甲、乙两种奖品共花费了650元,即40x+30y=650,
综上方程组为,
故选A.
【点睛】
本题考查了二元一次方程组的列式,属于简单题,找到等量关系是解题关键.
7、A
【解析】
根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c-a>0,a+b<0,根据绝对值的性质化简计算.
【详解】
由数轴可知,b<a<0<c,
∴c-a>0,a+b<0,
则|c-a|-|a+b|=c-a+a+b=c+b,
故选A.
【点睛】
本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.
8、B
【解析】
解:第一个图是轴对称图形,又是中心对称图形;
第二个图是轴对称图形,不是中心对称图形;
第三个图是轴对称图形,又是中心对称图形;
第四个图是轴对称图形,不是中心对称图形;
既是轴对称图形,又是中心对称图形的有2个.故选B.
9、B
【解析】
根据相似图形的定义,结合选项中提到的图形,对选项一一分析,选出正确答案.
【详解】
解:A、两个全等的三角形一定相似,正确;
B、两个等腰三角形一定相似,错误,等腰三角形的形状不一定相同;
C、两个等边三角形一定相似;正确,等边三角形形状相同,只是大小不同;
D、两个等腰直角三角形一定相似,正确,等腰直角三角形形状相同,只是大小不同.
故选B.
【点睛】
本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.特别注意,本题是选择错误的,一定要看清楚题.
10、C
【解析】
由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.
【详解】
解:∵AB与⊙O相切于点A,
∴OA⊥BA.
∴∠OAB=90°.
∵∠CDA=27°,
∴∠BOA=54°.
∴∠B=90°-54°=36°.
故选C.
考点:切线的性质.
11、C
【解析】
解:球是主视图是圆,圆是中心对称图形,故选C.
12、A
【解析】
根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.
【详解】
选项A,是轴对称图形,不是中心对称图形,故可以选;
选项B,是轴对称图形,也是中心对称图形,故不可以选;
选项C,不是轴对称图形,是中心对称图形,故不可以选;
选项D,是轴对称图形,也是中心对称图形,故不可以选.
故选A
【点睛】
本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.
错因分析 容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、x+1
【解析】
先通分,进行分式的加减法,再将分子进行因式分解,然后约分即可求出结果.
【详解】
解:
=
.
故答案是:x+1.
【点睛】
本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.
14、4.8或
【解析】
根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.
【详解】
①CP和CB是对应边时,△CPQ∽△CBA,
所以=,
即=,
解得t=4.8;
②CP和CA是对应边时,△CPQ∽△CAB,
所以=,
即=,
解得t=.
综上所述,当t=4.8或时,△CPQ与△CBA相似.
【点睛】
此题主要考查相似三角形的性质,解题的关键是分情况讨论.
15、
【解析】
首先根据题意列表,由列表求得所有等可能的结果与两次都摸到黑球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
【详解】
列表得:
第一次
第二次
黑
白
白
黑
黑,黑
白,黑
白,黑
白
黑,白
白,白
白,白
白
黑,白
白,白
白,白
∵共有9种等可能的结果,两次都摸到黑球的只有1种情况,
∴两次都摸到黑球的概率是.
故答案为:.
【点睛】
考查概率的计算,掌握概率等于所求情况数与总情况数之比是解题的关键.
16、
【解析】
此题涉及特殊角的三角函数值、零指数幂、二次根式化简,绝对值的性质.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【详解】
原式
.
【点睛】
此题考查特殊角的三角函数值,实数的运算,零指数幂,绝对值,解题关键在于掌握运算法则.
17、288°
【解析】
母线长为15cm,高为9cm,由勾股定理可得圆锥的底面半径;由底面周长与扇形的弧长相等求得圆心角.
【详解】
解:如图所示,在Rt△SOA中,SO=9,SA=15;
则:
设侧面属开图扇形的国心角度数为n,则由 得n=288°
故答案为:288°.
【点睛】
本题利用了勾股定理,弧长公式,圆的周长公式和扇形面积公式求解.
18、>1
【解析】
依题意可得,解得,所以函数的自变量的取值范围是
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、50 见解析(3)115.2° (4)
【解析】
试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;
(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;
(3)根据圆心角的度数=360 º×它所占的百分比计算;
(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.
解:(1)由题意可知该班的总人数=15÷30%=50(名)
故答案为50;
(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)
补全条形统计图如图所示:
(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,
故答案为115.2°;
(4)画树状图如图.
由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,
所以P(恰好选出一男一女)==.
点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.
20、(1) ,顶点坐标(1,-4);(2)m=1;(3)①当a>0时,y2>y1 ,②当a<0时,y1>y2 .
【解析】
试题分析:
(1)把a=2,b=4代入并配方,即可求出此时二次函数图象的顶点坐标;
(2)由题意把(m,t)和(-m,-t)代入(1)中所得函数的解析式,解方程组即可求得m的值;
(3)把点(1,0)代入可得b=a-2,由此可得抛物线的对称轴为直线:,再分a>0和a<0两种情况分别讨论即可y1和y2的大小关系了.
试题解析:
(1)把a=2,b=4代入得:,
∴此时二次函数的图象的顶点坐标为(1,-4);
(2)由题意,把(m,t)和(-m,-t)代入得:
①,②,
由①+②得:,解得:;
(3)把点(1,0)代入得a-b-2=0,
∴b=a-2,
∴此时该二次函数图象的对称轴为直线:,
①当a>0时,,,
∵此时,且抛物线开口向上,
∴中,点B距离对称轴更远,
∴y1
∵此时,且抛物线开口向下,
∴中,点B距离对称轴更远,
∴y1>y2;
综上所述,当a>0时,y1
点睛:在抛物线上:(1)当抛物线开口向上时,抛物线上的点到对称轴的距离越远,所对应的函数值就越大;(2)当抛物线开口向下时,抛物线上的点到对称轴的距离越近,所对应的函数值就越大;
21、(1)作图见解析;;(2)作图见解析.
【解析】
试题分析:(1)通过数格子可得到点P关于AC的对称点,再直接利用勾股定理可得到周长;(2)利用网格结合矩形的性质以及勾股定理可画出矩形.
试题解析:(1)如图1所示:四边形AQCP即为所求,它的周长为:;(2)如图2所示:四边形ABCD即为所求.
考点:1轴对称;2勾股定理.
22、(1)见解析;(2)
【解析】
分析:
(1)如下图,连接OD,由OA=OD可得∠DAO=∠ADO,结合∠CAD=∠DAB,可得∠CAD=∠ADO,从而可得OD∥AC,由此可得∠C+∠CDO=180°,结合∠C=90°可得∠CDO=90°即可证得CD是⊙O的切线;
(2)如下图,连接BD,由AB是⊙O的直径可得∠ADB=90°=∠C,结合∠CAD=∠DAB可得△ACD∽△ADB,由此可得,在Rt△ABD中由AD=6,AB=9易得BD=,由此即可解得CD的长了.
详解:
(1)如下图,连接OD.
∵OA=OD,
∴∠DAB=∠ODA,
∵∠CAD=∠DAB,
∴∠ODA=∠CAD
∴AC∥OD
∴∠C+∠ODC=180°
∵∠C=90°
∴∠ODC=90°
∴OD⊥CD,
∴CD是⊙O的切线.
(2)如下图,连接BD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∵AB=9,AD=6,
∴BD===3,
∵∠CAD=∠BAD,∠C=∠ADB=90°,
∴△ACD∽△ADB,
∴,
∴,
∴CD=.
点睛:这是一道考查“圆和直线的位置关系与相似三角形的判定和性质”的几何综合题,作出如图所示的辅助线,熟悉“圆的切线的判定方法”和“相似三角形的判定和性质”是正确解答本题的关键.
23、 (1) m≠1且m≠;(2) m=-1或m=-2.
【解析】
(1)由方程有两个不相等的实数根,可得△>1,列出关于m的不等式解之可得答案;
(2) 解方程,得:,,由m为整数,且方程的两个根均为负整数可得m的值.
【详解】
解:(1) △=-4ac=(3m-2)+24m=(3m+2)≥1
当m≠1且m≠时,方程有两个不相等实数根.
(2)解方程,得:,,
m为整数,且方程的两个根均为负整数,
m=-1或m=-2.
m=-1或m=-2时,此方程的两个根都为负整数
【点睛】
本题主要考查利用一元二次方程根的情况求参数.
24、(1)不可能事件;(2).
【解析】
试题分析:(1)根据随机事件的概念即可得“小李同学在该天早餐得到两个油饼”是不可能事件;(2)根据题意画出树状图,再由概率公式求解即可.
试题解析:(1)小李同学在该天早餐得到两个油饼”是不可能事件;
(2)树状图法
即小张同学得到猪肉包和油饼的概率为.
考点:列表法与树状图法.
25、2,1
【解析】
根据题意得出不等式组,解不等式组求得其解集即可.
【详解】
根据题意得,
解不等式①,得:x≤1,
解不等式②,得:x>1,
则不等式组的解集为1<x≤1,
∴x可取的整数值是2,1.
【点睛】
本题考查了解不等式组的能力,根据题意得出不等式组是解题的关键.
26、y=2x+1.
【解析】
直接把点A(﹣1,1),B(1,5)代入一次函数y=kx+b(k≠0),求出k、b的值即可.
【详解】
∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1)和点B(1,5),∴,解得:.
故一次函数的解析式为y=2x+1.
【点睛】
本题考查了待定系数法求一次函数的解析式,熟知待定系数法求一次函数解析式一般步骤是解答此题的关键.
27、(1)见解析;(2)2 (3)1
【解析】
(1)通过证明∠BED=∠DBE得到DB=DE;
(2)连接CD,如图,证明△DBC为等腰直角三角形得到BC=BD=4,从而得到△ABC外接圆的半径;
(3)证明△DBF∽△ADB,然后利用相似比求AD的长.
【详解】
(1)证明:∵AD平分∠BAC,BE平分∠ABD,
∴∠1=∠2,∠3=∠4,
∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,
∴DB=DE;
(2)解:连接CD,如图,
∵∠BAC=10°,
∴BC为直径,
∴∠BDC=10°,
∵∠1=∠2,
∴DB=BC,
∴△DBC为等腰直角三角形,
∴BC=BD=4,
∴△ABC外接圆的半径为2;
(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,
∴△DBF∽△ADB,
∴=,即=,
∴AD=1.
【点睛】
本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和相似三角形的判定与性质.
湖南省长沙市青雅丽发中学2023-2024学年数学九上期末考试模拟试题含答案: 这是一份湖南省长沙市青雅丽发中学2023-2024学年数学九上期末考试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知关于x的一元二次方程x2-等内容,欢迎下载使用。
2023-2024学年湖南省长沙市青雅丽发中学八上数学期末经典试题含答案: 这是一份2023-2024学年湖南省长沙市青雅丽发中学八上数学期末经典试题含答案,共7页。试卷主要包含了使分式的值等于0的x的值是,下列运算正确的是等内容,欢迎下载使用。
湖南省长沙青雅丽发中学2021-2022学年中考数学仿真试卷含解析: 这是一份湖南省长沙青雅丽发中学2021-2022学年中考数学仿真试卷含解析,共20页。试卷主要包含了一元一次不等式2,估算的值是在等内容,欢迎下载使用。