搜索
    上传资料 赚现金
    英语朗读宝

    湖南省株洲市荷塘区第五中学2022年中考数学考试模拟冲刺卷含解析

    湖南省株洲市荷塘区第五中学2022年中考数学考试模拟冲刺卷含解析第1页
    湖南省株洲市荷塘区第五中学2022年中考数学考试模拟冲刺卷含解析第2页
    湖南省株洲市荷塘区第五中学2022年中考数学考试模拟冲刺卷含解析第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省株洲市荷塘区第五中学2022年中考数学考试模拟冲刺卷含解析

    展开

    这是一份湖南省株洲市荷塘区第五中学2022年中考数学考试模拟冲刺卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,二次函数y=﹣,下列图案是轴对称图形的是,下列说法正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.计算的值( )
    A.1 B. C.3 D.
    2.计算-5+1的结果为( )
    A.-6 B.-4 C.4 D.6
    3.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(  )
    A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y3
    4.二次函数y=﹣(x+2)2﹣1的图象的对称轴是(  )
    A.直线x=1 B.直线x=﹣1 C.直线x=2 D.直线x=﹣2
    5.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠DEA=(  )

    A.40° B.110° C.70° D.140°
    6.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )

    A.甲的速度是4km/h B.乙的速度是10km/h
    C.乙比甲晚出发1h D.甲比乙晚到B地3h
    7.下列图案是轴对称图形的是(  )
    A. B. C. D.
    8.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是(  )

    A.85° B.105° C.125° D.160°
    9.下列说法正确的是(   )
    A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨
    B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上
    C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖
    D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近
    10.如图,等腰△ABC中,AB=AC=10,BC=6,直线MN垂直平分AB交AC于D,连接BD,则△BCD的周长等于(  )

    A.13 B.14 C.15 D.16
    11.下列说法不正确的是( )
    A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖
    B.了解一批电视机的使用寿命适合用抽样调查
    C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定
    D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件
    12.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.一个正多边形的一个外角为30°,则它的内角和为_____.
    14.函数y=中自变量x的取值范围是_____.
    15.已知x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是______.
    16.如图,的半径为,点,,,都在上,,将扇形绕点顺时针旋转后恰好与扇形重合,则的长为_____.(结果保留)

    17.如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____.

    18.将多项式xy2﹣4xy+4y因式分解:_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一老人坐在MN这层台阶上晒太阳.(取1.73)
    (1)求楼房的高度约为多少米?
    (2)过了一会儿,当α=45°时,问老人能否还晒到太阳?请说明理由.

    20.(6分)如图,在平面直角坐标系xOy中,函数的图象与直线y=2x+1交于点A(1,m).
    (1)求k、m的值;
    (2)已知点P(n,0)(n≥1),过点P作平行于y轴的直线,交直线y=2x+1于点B,交函数的图象于点C.横、纵坐标都是整数的点叫做整点.

    ①当n=3时,求线段AB上的整点个数;
    ②若的图象在点A、C之间的部分与线段AB、BC所围成的区域内(包括边界)恰有5个整点,直接写出n的取值范围.
    21.(6分)为了解某市市民上班时常用交通工具的状况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如图所示的尚不完整的统计图:

    根据以上统计图,解答下列问题:本次接受调查的市民共有  人;扇形统计图中,扇形B的圆心角度数是  ;请补全条形统计图;若该市“上班族”约有15万人,请估计乘公交车上班的人数.
    22.(8分)抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).
    求抛物线的解析式;如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.
    23.(8分) “六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:

    (1)该校有_____个班级,补全条形统计图;
    (2)求该校各班留守儿童人数数据的平均数,众数与中位数;
    (3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.
    24.(10分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.
    (1)求抛物线的表达式;
    (2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
    (3)如图2,连接BC,PB,PC,设△PBC的面积为S.
    ①求S关于t的函数表达式;
    ②求P点到直线BC的距离的最大值,并求出此时点P的坐标.

    25.(10分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1.
    (1)求抛物线的解析式及点D的坐标;
    (2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;
    (3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.

    26.(12分)台州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:p= t+16,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:
    (1)求日销售量y与时间t的函数关系式?
    (2)哪一天的日销售利润最大?最大利润是多少?
    (3)该养殖户有多少天日销售利润不低于2400元?

    27.(12分)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.证明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的长,




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    根据有理数的加法法则进行计算即可.
    【详解】

    故选:A.
    【点睛】
    本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.
    2、B
    【解析】
    根据有理数的加法法则计算即可.
    【详解】
    解:-5+1=-(5-1)=-1.
    故选B.
    【点睛】
    本题考查了有理数的加法.
    3、D
    【解析】
    先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.
    【详解】
    ∵反比例函数y=中,k=1>0,
    ∴此函数图象的两个分支在一、三象限,
    ∵x1<x2<0<x1,
    ∴A、B在第三象限,点C在第一象限,
    ∴y1<0,y2<0,y1>0,
    ∵在第三象限y随x的增大而减小,
    ∴y1>y2,
    ∴y2<y1<y1.
    故选D.
    【点睛】
    本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.
    4、D
    【解析】
    根据二次函数顶点式的性质解答即可.
    【详解】
    ∵y=﹣(x+2)2﹣1是顶点式,
    ∴对称轴是:x=-2,
    故选D.
    【点睛】
    本题考查二次函数顶点式y=a(x-h)2+k的性质,对称轴为x=h,顶点坐标为(h,k)熟练掌握顶点式的性质是解题关键.
    5、B
    【解析】
    先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=40°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数,进而得到∠DEA的度数.
    【详解】
    ∵AB∥CD,
    ∴∠ACD+∠BAC=180°,
    ∵∠ACD=40°,
    ∴∠BAC=180°﹣40°=140°,
    ∵AE平分∠CAB,
    ∴∠BAE=∠BAC=×140°=70°,
    ∴∠DEA=180°﹣∠BAE=110°,
    故选B.
    【点睛】
    本题考查了平行线的性质和角平分线的定义,解题的关键是熟练掌握两直线平行,同旁内角互补.
    6、C
    【解析】
    甲的速度是:20÷4=5km/h;
    乙的速度是:20÷1=20km/h;
    由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,
    故选C.
    7、C
    【解析】
    解:A.此图形不是轴对称图形,不合题意;
    B.此图形不是轴对称图形,不合题意;
    C.此图形是轴对称图形,符合题意;
    D.此图形不是轴对称图形,不合题意.
    故选C.
    8、C
    【解析】
    首先求得AB与正东方向的夹角的度数,即可求解.
    【详解】
    根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,
    故选:C.
    【点睛】
    本题考查了方向角,正确理解方向角的定义是关键.
    9、D
    【解析】
    根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.
    【详解】
    解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;
    B. “抛一枚硬币正面朝上的概率为”表示每次抛正面朝上的概率都是,故B不符合题意;
    C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;
    D. “抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近,故D符合题意;
    故选D
    【点睛】
    本题考查了概率的意义,正确理解概率的含义是解决本题的关键.
    10、D
    【解析】
    由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由△CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.
    【详解】
    解:∵MN是线段AB的垂直平分线,
    ∴AD=BD,
    ∵AB=AC=10,
    ∴BD+CD=AD+CD=AC=10,
    ∴△BCD的周长=AC+BC=10+6=16,故选D.
    【点睛】
    此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用.
    11、A
    【解析】
    试题分析:根据抽样调查适用的条件、方差的定义及意义和可能性的大小找到正确答案即可.
    试题解析:A、某种彩票中奖的概率是,只是一种可能性,买1000张该种彩票不一定会中奖,故错误;
    B、调查电视机的使用寿命要毁坏电视机,有破坏性,适合用抽样调查,故正确;
    C、标准差反映了一组数据的波动情况,标准差越小,数据越稳定,故正确;
    D、袋中没有黑球,摸出黑球是不可能事件,故正确.
    故选A.
    考点:1.概率公式;2.全面调查与抽样调查;3.标准差;4.随机事件.
    12、D
    【解析】
    根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.
    【详解】
    解:根据题意画图如下:

    共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,
    则抽到的书签正好是相对应的书名和作者姓名的概率是=;
    故选D.
    【点睛】
    此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1800°
    【解析】
    试题分析:这个正多边形的边数为=12,
    所以这个正多边形的内角和为(12﹣2)×180°=1800°.
    故答案为1800°.
    考点:多边形内角与外角.
    14、x≥﹣且x≠1.
    【解析】
    根据分式有意义的条件、二次根式有意义的条件列式计算.
    【详解】
    由题意得,2x+3≥0,x-1≠0,
    解得,x≥-且x≠1,
    故答案为:x≥-且x≠1.
    【点睛】
    本题考查的是函数自变量的取值范围,①当表达式的分母不含有自变量时,自变量取全体实数.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.
    15、6
    【解析】
    已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,根据方程解的定义及根与系数的关系可得x12﹣2 x1﹣1=0, x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2 x1+1, x22=2 x2+1,代入所给的代数式,再利用完全平方公式变形,整体代入求值即可.
    【详解】
    ∵x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,
    ∴x12﹣2 x1﹣1=0, x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,
    即x12=2 x1+1, x22=2 x2+1,
    ∴=
    故答案为6.
    【点睛】
    本题考查了一元二次方程解的定义及根与系数的关系,会熟练运用整体思想是解决本题的关键.
    16、.
    【解析】
    根据题意先利用旋转的性质得到∠BOD=120°,则∠AOD=150°,然后根据弧长公式计算即可.
    【详解】
    解:∵扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,
    ∴∠BOD=120°,
    ∴∠AOD=∠AOB+∠BOD=30°+120°=150°,
    ∴的长=.
    故答案为:.
    【点睛】
    本题考查了弧长的计算及旋转的性质,掌握弧长公式l=(弧长为l,圆心角度数为n,圆的半径为R)是解题的关键.
    17、或10
    【解析】
    试题分析:根据题意,可分为E点在DC上和E在DC的延长线上,两种情况求解即可:
    如图①,当点E在DC上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=2,设FE=x,则FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=.(2)如图②,当,所以FQ=点E在DG的延长线上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=8,设DE=x,则FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,综上所述,DE=或10.

    18、y(xy﹣4x+4)
    【解析】
    直接提公因式y即可解答.
    【详解】
    xy2﹣4xy+4y=y(xy﹣4x+4).
    故答案为:y(xy﹣4x+4).
    【点睛】
    本题考查了因式分解——提公因式法,确定多项式xy2﹣4xy+4y的公因式为y是解决问题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)楼房的高度约为17.3米;(2)当α=45°时,老人仍可以晒到太阳.理由见解析.
    【解析】
    试题分析:(1)在Rt△ABE中,根据的正切值即可求得楼高;(2)当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM=0.2,所以大楼的影子落在台阶MC这个侧面上.即小猫仍可晒到太阳.
    试题解析:解:(1)当当时,在Rt△ABE中,
    ∵,
    ∴BA=10tan60°=米.
    即楼房的高度约为17.3米.

    当时,小猫仍可晒到太阳.理由如下:
    假设没有台阶,当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.
    ∵∠BFA=45°,
    ∴,此时的影长AF=BA=17.3米,
    所以CF=AF-AC=17.3-17.2=0.1.
    ∴CH=CF=0.1米,
    ∴大楼的影子落在台阶MC这个侧面上.
    ∴小猫仍可晒到太阳.
    考点:解直角三角形.
    20、(1)m=3,k=3;(2)①线段AB上有(1,3)、(2,5)、(3,7)共3个整点,②当2≤n<3时,有五个整点.
    【解析】
    (1)将A点代入直线解析式可求m,再代入,可求k.
    (2)①根据题意先求B,C两点,可得线段AB上的整点的横坐标的范围1≤x≤3,且x为整数,所以x取1,2,3.再代入可求整点,即求出整点个数.
    ②根据图象可以直接判断2≤n<3.
    【详解】
    (1)∵点A(1,m)在y=2x+1上,
    ∴m=2×1+1=3.
    ∴A(1,3).
    ∵点A(1,3)在函数的图象上,
    ∴k=3.
    (2)①当n=3时,B、C两点的坐标为B(3,7)、C(3,1).
    ∵整点在线段AB上
    ∴1≤x≤3且x为整数
    ∴x=1,2,3
    ∴当x=1时,y=3,
    当x=2时,y=5,
    当x=3时,y=7,
    ∴线段AB上有(1,3)、(2,5)、(3,7)共3个整点.

    ②由图象可得当2≤n<3时,有五个整点.
    【点睛】
    本题考查反比例函数和一次函数的交点问题,待定系数法,以及函数图象的性质.关键是能利用函数图象有关解决问题.
    21、(1)1;(2)43.2°;(3)条形统计图如图所示:见解析;(4)估计乘公交车上班的人数为6万人.
    【解析】
    (1)根据D组人数以及百分比计算即可.
    (2)根据圆心角度数=360°×百分比计算即可.
    (3)求出A,C两组人数画出条形图即可.
    (4)利用样本估计总体的思想解决问题即可.
    【详解】
    (1)本次接受调查的市民共有:50÷25%=1(人),
    故答案为1.
    (2)扇形统计图中,扇形B的圆心角度数=360°×=43.2°;
    故答案为:43.2°
    (3)C组人数=1×40%=80(人),A组人数=1﹣24﹣80﹣50﹣16=30(人).
    条形统计图如图所示:

    (4)15×40%=6(万人).
    答:估计乘公交车上班的人数为6万人.
    【点睛】
    本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    22、(1)y=x2﹣2x﹣3;(2);(3)当k发生改变时,直线QH过定点,定点坐标为(0,﹣2)
    【解析】
    (1)把点A(﹣1,0),C(0,﹣3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;
    (2)作CH⊥EF于H,设N的坐标为(1,n),证明Rt△NCH∽△MNF,可得m=n2+3n+1,因为﹣4≤n≤0,即可得出m的取值范围;
    (3)设点P(x1,y1),Q(x2,y2),则点H(﹣x1,y1),设直线HQ表达式为y=ax+t,用待定系数法和韦达定理可求得a=x2﹣x1,t=﹣2,即可得出直线QH过定点(0,﹣2).
    【详解】
    解:(1)∵抛物线y=x2+bx+c经过点A、C,
    把点A(﹣1,0),C(0,﹣3)代入,得:,
    解得,
    ∴抛物线的解析式为y=x2﹣2x﹣3;
    (2)如图,作CH⊥EF于H,
    ∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
    ∴抛物线的顶点坐标E(1,﹣4),
    设N的坐标为(1,n),﹣4≤n≤0
    ∵∠MNC=90°,
    ∴∠CNH+∠MNF=90°,
    又∵∠CNH+∠NCH=90°,
    ∴∠NCH=∠MNF,
    又∵∠NHC=∠MFN=90°,
    ∴Rt△NCH∽△MNF,
    ∴,即
    解得:m=n2+3n+1=,
    ∴当时,m最小值为;
    当n=﹣4时,m有最大值,m的最大值=16﹣12+1=1.
    ∴m的取值范围是.
    (3)设点P(x1,y1),Q(x2,y2),
    ∵过点P作x轴平行线交抛物线于点H,
    ∴H(﹣x1,y1),
    ∵y=kx+2,y=x2,
    消去y得,x2﹣kx﹣2=0,
    x1+x2=k,x1x2=﹣2,
    设直线HQ表达式为y=ax+t,
    将点Q(x2,y2),H(﹣x1,y1)代入,得,
    ∴y2﹣y1=a(x1+x2),即k(x2﹣x1)=ka,
    ∴a=x2﹣x1,
    ∵=( x2﹣x1)x2+t,
    ∴t=﹣2,
    ∴直线HQ表达式为y=( x2﹣x1)x﹣2,
    ∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).


    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键.
    23、(1)16;(2)平均数是3,众数是10,中位数是3;(3)1.
    【解析】
    (1)根据有7名留守儿童班级有2个,所占的百分比是2.5%,即可求得班级的总个数,再求出有8名留守儿童班级的个数,进而补全条形统计图;
    (2)将这组数据按照从小到大排列即可求得统计的这组留守儿童人数数据的平均数、众数和中位数;
    (3)利用班级数60乘以(2)中求得的平均数即可.
    【详解】
    解:(1)该校的班级数是:2÷2.5%=16(个).
    则人数是8名的班级数是:16﹣1﹣2﹣6﹣2=5(个).
    条形统计图补充如下图所示:

    故答案为16;
    (2)每班的留守儿童的平均数是:(1×6+2×7+5×8+6×10+2×2)÷16=3
    将这组数据按照从小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2.
    故这组数据的众数是10,中位数是(8+10)÷2=3.
    即统计的这组留守儿童人数数据的平均数是3,众数是10,中位数是3;
    (3)该镇小学生中,共有留守儿童60×3=1(名).
    答:该镇小学生中共有留守儿童1名.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了平均数、中位数和众数以及用样本估计总体.
    24、(1)y=﹣x2+2x+1.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存在,理由见解析;(1)y=﹣x+1;P点到直线BC的距离的最大值为,此时点P的坐标为(,).
    【解析】
    【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;
    (2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;
    (1)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;
    ②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.
    【详解】(1)将A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,
    得,解得:,
    ∴抛物线的表达式为y=﹣x2+2x+1;
    (2)在图1中,连接PC,交抛物线对称轴l于点E,
    ∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(1,0)两点,
    ∴抛物线的对称轴为直线x=1,
    当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,
    ∵抛物线的表达式为y=﹣x2+2x+1,
    ∴点C的坐标为(0,1),点P的坐标为(2,1),
    ∴点M的坐标为(1,6);
    当t≠2时,不存在,理由如下:
    若四边形CDPM是平行四边形,则CE=PE,
    ∵点C的横坐标为0,点E的横坐标为0,
    ∴点P的横坐标t=1×2﹣0=2,
    又∵t≠2,
    ∴不存在;
    (1)①在图2中,过点P作PF∥y轴,交BC于点F.
    设直线BC的解析式为y=mx+n(m≠0),
    将B(1,0)、C(0,1)代入y=mx+n,
    得,解得:,
    ∴直线BC的解析式为y=﹣x+1,
    ∵点P的坐标为(t,﹣t2+2t+1),
    ∴点F的坐标为(t,﹣t+1),
    ∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,
    ∴S=PF•OB=﹣t2+t=﹣(t﹣)2+;
    ②∵﹣<0,
    ∴当t=时,S取最大值,最大值为.
    ∵点B的坐标为(1,0),点C的坐标为(0,1),
    ∴线段BC=,
    ∴P点到直线BC的距离的最大值为,
    此时点P的坐标为(,).

    【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(1)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.
    25、 (1) ,点D的坐标为(2,-8) (2) 点F的坐标为(7,)或(5,)(3) 菱形对角线MN的长为或.
    【解析】
    分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,∠FAB=∠EDB, tan∠FAG=tan∠BDE,求出F点坐标.(3)分类讨论,当MN在x轴上方时,在x轴下方时分别计算MN.
    详解:
    (1)∵OB=OC=1,
    ∴B(1,0),C(0,-1).
    ∴,
    解得,
    ∴抛物线的解析式为.
    ∵=,
    ∴点D的坐标为(2,-8).

    (2)如图,当点F在x轴上方时,设点F的坐标为(x,).过点F作FG⊥x轴于点G,易求得OA=2,则AG=x+2,FG=.
    ∵∠FAB=∠EDB,
    ∴tan∠FAG=tan∠BDE,
    即,
    解得,(舍去).
    当x=7时,y=,
    ∴点F的坐标为(7,).
    当点F在x轴下方时,设同理求得点F的坐标为(5,).
    综上所述,点F的坐标为(7,)或(5,).
    (3)∵点P在x轴上,

    ∴根据菱形的对称性可知点P的坐标为(2,0).
    如图,当MN在x轴上方时,设T为菱形对角线的交点.
    ∵PQ=MN,
    ∴MT=2PT.
    设TP=n,则MT=2n. ∴M(2+2n,n).
    ∵点M在抛物线上,
    ∴,即.
    解得,(舍去).
    ∴MN=2MT=4n=.
    当MN在x轴下方时,设TP=n,得M(2+2n,-n).
    ∵点M在抛物线上,
    ∴,
    即.
    解得,(舍去).
    ∴MN=2MT=4n=.
    综上所述,菱形对角线MN的长为或.
    点睛:
    1.求二次函数的解析式
    (1)已知二次函数过三个点,利用一般式,y=ax2+bx+c().列方程组求二次函数解析式.
    (2)已知二次函数与x轴的两个交点(,利用双根式,y=()求二次函数解析式,而且此时对称轴方程过交点的中点,.
    2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥匙.
    26、 (1)y=﹣2t+200(1≤t≤80,t为整数); (2)第30天的日销售利润最大,最大利润为2450元;(3)共有21天符合条件.
    【解析】
    (1)根据函数图象,设解析式为y=kt+b,将(1,198)、(80,40)代入,利用待定系数法求解可得;
    (2)设日销售利润为w,根据“总利润=每千克利润×销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;
    (3)求出w=2400时t的值,结合函数图象即可得出答案;
    【详解】
    (1)设解析式为y=kt+b,将(1,198)、(80,40)代入,得:
    ,解得:,∴y=﹣2t+200(1≤t≤80,t为整数);
    (2)设日销售利润为w,则w=(p﹣6)y,
    当1≤t≤80时,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,
    ∴当t=30时,w最大=2450;

    ∴第30天的日销售利润最大,最大利润为2450元.
    (3)由(2)得:当1≤t≤80时,
    w=﹣(t﹣30)2+2450,
    令w=2400,即﹣ (t﹣30)2+2450=2400,
    解得:t1=20、t2=40,
    ∴t的取值范围是20≤t≤40,
    ∴共有21天符合条件.
    【点睛】
    本题考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象解不等式及二次函数的图象与性质是解题关键.
    27、(1)见解析;(2)EC=1.
    【解析】
    (1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性质可推出∠F=∠BDE,再根据对顶角相等进行等量代换即可推出∠F=∠FDA,于是得到结论;
    (2)根据解直角三角形和等边三角形的性质即可得到结论.
    【详解】
    (1)∵AB=AC,
    ∴∠B=∠C,
    ∵FE⊥BC,
    ∴∠F+∠C=90°,∠BDE+∠B=90°,
    ∴∠F=∠BDE,
    而∠BDE=∠FDA,
    ∴∠F=∠FDA,
    ∴AF=AD,
    ∴△ADF是等腰三角形;
    (2)∵DE⊥BC,
    ∴∠DEB=90°,
    ∵∠B=60°,BD=1,
    ∴BE=BD=2,
    ∵AB=AC,
    ∴△ABC是等边三角形,
    ∴BC=AB=AD+BD=6,
    ∴EC=BC﹣BE=1.
    【点睛】
    本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F=∠FDA,即可推出结论.

    相关试卷

    2023年湖南省株洲市荷塘区中考数学模拟试卷(含解析):

    这是一份2023年湖南省株洲市荷塘区中考数学模拟试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖南省株洲市荷塘区第五中学2021-2022学年中考联考数学试卷含解析:

    这是一份湖南省株洲市荷塘区第五中学2021-2022学年中考联考数学试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是等内容,欢迎下载使用。

    2022年湖南省长沙市铁路一中学中考数学考试模拟冲刺卷含解析:

    这是一份2022年湖南省长沙市铁路一中学中考数学考试模拟冲刺卷含解析,共17页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map