终身会员
搜索
    上传资料 赚现金
    吉林省吉林市吉化第九中学2021-2022学年十校联考最后数学试题含解析
    立即下载
    加入资料篮
    吉林省吉林市吉化第九中学2021-2022学年十校联考最后数学试题含解析01
    吉林省吉林市吉化第九中学2021-2022学年十校联考最后数学试题含解析02
    吉林省吉林市吉化第九中学2021-2022学年十校联考最后数学试题含解析03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    吉林省吉林市吉化第九中学2021-2022学年十校联考最后数学试题含解析

    展开
    这是一份吉林省吉林市吉化第九中学2021-2022学年十校联考最后数学试题含解析,共28页。试卷主要包含了计算的结果为等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.有下列四种说法:
    ①半径确定了,圆就确定了;②直径是弦;
    ③弦是直径;④半圆是弧,但弧不一定是半圆.
    其中,错误的说法有(  )
    A.1种 B.2种 C.3种 D.4种
    2.化简:-,结果正确的是(  )
    A.1 B. C. D.
    3.若顺次连接四边形各边中点所得的四边形是菱形,则四边形一定是( )
    A.矩形 B.菱形
    C.对角线互相垂直的四边形 D.对角线相等的四边形
    4.若点A(a,b),B(,c)都在反比例函数y=的图象上,且﹣1<c<0,则一次函数y=(b﹣c)x+ac的大致图象是(  )
    A. B.
    C. D.
    5.据统计, 2015年广州地铁日均客运量均为人次,将用科学记数法表示为( )
    A. B. C. D.
    6.如图是二次函数y =ax2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b2–4ac<0,其中正确的有( )

    A.1个 B.2个 C.3个 D.4
    7.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设Pn(xn,yn),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为(  )

    A.1 B.3 C.﹣1 D.2019
    8.光年天文学中的距离单位,1光年大约是9500000000000km,用科学记数法表示为  
    A. B. C. D.
    9.计算的结果为(  )
    A.2 B.1 C.0 D.﹣1
    10.如图,左、右并排的两棵树AB和CD,小树的高AB=6m,大树的高CD=9m,小明估计自己眼睛距地面EF=1.5m,当他站在F点时恰好看到大树顶端C点.已知此时他与小树的距离BF=2m,则两棵树之间的距离BD是(  )

    A.1m B.m C.3m D.m
    11.如图,3个形状大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60°,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若也在格点上,且∠AED=∠ACD,则∠AEC 度数为 ( )

    A.75° B.60° C.45° D.30°
    12.函数的自变量x的取值范围是( )
    A.x>1 B.x<1 C.x≤1 D.x≥1
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.关于x的一元二次方程(k-1)x2+6x+k2-k=0的一个根是0,则k的值是______.
    14.如图,小红作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2,B2,C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积,用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第8个正△A8B8C8的面积是_____.

    15.若m+=3,则m2+=_____.
    16.在平面直角坐标系中,点P到轴的距离为1,到轴的距离为2.写出一个符合条件的点P的坐标________________.
    17.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.
    18.如图,直线y=k1x+b与双曲线交于A、B两点,其横坐标分别为1和5,则不等式k1x<+b的解集是 ▲ .
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图①,一次函数y=x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=x2+bx+c的图象经过A、B两点,与x轴交于另一点C.
    (1)求二次函数的关系式及点C的坐标;
    (2)如图②,若点P是直线AB上方的抛物线上一点,过点P作PD∥x轴交AB于点D,PE∥y轴交AB于点E,求PD+PE的最大值;
    (3)如图③,若点M在抛物线的对称轴上,且∠AMB=∠ACB,求出所有满足条件的点M的坐标.

    20.(6分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为1.
    (1)当m=1,n=20时.
    ①若点P的纵坐标为2,求直线AB的函数表达式.
    ②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
    (2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.

    21.(6分)已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,

    (1)如图,连接AC、OD,设∠OAC=α,请用α表示∠AOD;
    (2)如图,当点B为的中点时,求点A、D之间的距离:
    (3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE的长.
    22.(8分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元.求y与x的函数关系式;每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?
    23.(8分)如图,在平面直角坐标系中,等边三角形ABC的顶点B与原点O重合,点C在x轴上,点C坐标为(6,0),等边三角形ABC的三边上有三个动点D、E、F(不考虑与A、B、C重合),点D从A向B运动,点E从B向C运动,点F从C向A运动,三点同时运动,到终点结束,且速度均为1cm/s,设运动的时间为ts,解答下列问题:
    (1)求证:如图①,不论t如何变化,△DEF始终为等边三角形.
    (2)如图②过点E作EQ∥AB,交AC于点Q,设△AEQ的面积为S,求S与t的函数关系式及t为何值时△AEQ的面积最大?求出这个最大值.
    (3)在(2)的条件下,当△AEQ的面积最大时,平面内是否存在一点P,使A、D、Q、P构成的四边形是菱形,若存在请直接写出P坐标,若不存在请说明理由?

    24.(10分)如图,正六边形ABCDEF在正三角形网格内,点O为正六边形的中心,仅用无刻度的直尺完成以下作图.
    (1)在图1中,过点O作AC的平行线;
    (2)在图2中,过点E作AC的平行线.

    25.(10分)已知C为线段上一点,关于x的两个方程与的解分别为线段的长,当时,求线段的长;若C为线段的三等分点,求m的值.
    26.(12分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:
    命中环数
    6
    7
    8
    9
    10
    甲命中相应环数的次数
    0
    1
    3
    1
    0
    乙命中相应环数的次数
    2
    0
    0
    2
    1
    (1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;
    (2)试通过计算说明甲、乙两人的成绩谁比较稳定?
    (3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”)
    27.(12分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,分别用、、表示;田赛项目:跳远,跳高分别用、表示.
    该同学从5个项目中任选一个,恰好是田赛项目的概率为______;
    该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据弦的定义、弧的定义、以及确定圆的条件即可解决.
    【详解】
    解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;
    直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;
    弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;
    ④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.
    其中错误说法的是①③两个.
    故选B.
    【点睛】
    本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆.
    2、B
    【解析】
    先将分母进行通分,化为(x+y)(x-y)的形式,分子乘上相应的分式,进行化简.
    【详解】

    【点睛】
    本题考查的是分式的混合运算,解题的关键就是熟练掌握运算规则.
    3、C
    【解析】
    【分析】如图,根据三角形的中位线定理得到EH∥FG,EH=FG,EF=BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案.
    【点睛】如图,∵E,F,G,H分别是边AD,DC,CB,AB的中点,
    ∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,
    ∴EH∥FG,EH=FG,
    ∴四边形EFGH是平行四边形,
    假设AC=BD,
    ∵EH=AC,EF=BD,
    则EF=EH,
    ∴平行四边形EFGH是菱形,
    即只有具备AC=BD即可推出四边形是菱形,
    故选D.

    【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.
    4、D
    【解析】
    将,代入,得,,然后分析与的正负,即可得到的大致图象.
    【详解】
    将,代入,得,,
    即,.
    ∴.
    ∵,∴,∴.
    即与异号.
    ∴.
    又∵,
    故选D.
    【点睛】
    本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出与的正负是解答本题的关键.
    5、D
    【解析】
    科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.
    【详解】
    解:6 590 000=6.59×1.
    故选:D.
    【点睛】
    本题考查学生对科学记数法的掌握,一定要注意a的形式,以及指数n的确定方法.
    6、B
    【解析】
    由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    ①抛物线与y轴交于负半轴,则c<1,故①正确;
    ②对称轴x1,则2a+b=1.故②正确;
    ③由图可知:当x=1时,y=a+b+c<1.故③错误;
    ④由图可知:抛物线与x轴有两个不同的交点,则b2﹣4ac>1.故④错误.
    综上所述:正确的结论有2个.
    故选B.
    【点睛】
    本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
    7、C
    【解析】
    根据各点横坐标数据得出规律,进而得出x +x +…+x ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果.
    【详解】
    解:根据平面坐标系结合各点横坐标得出:x1、x2、x3、x4、x5、x6、x7、x8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5;
    ∴x1+x2+…+x7=﹣1
    ∵x1+x2+x3+x4=1﹣1﹣1+3=2;
    x5+x6+x7+x8=3﹣3﹣3+5=2;

    x97+x98+x99+x100=2…
    ∴x1+x2+…+x2016=2×(2016÷4)=1.
    而x2017、x2018、x2019的值分别为:1009、﹣1009、﹣1009,
    ∴x2017+x2018+x2019=﹣1009,
    ∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,
    故选C.
    【点睛】
    此题主要考查规律型:点的坐标,解题关键在于找到其规律
    8、C
    【解析】
    科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:将9500000000000km用科学记数法表示为.
    故选C.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    9、B
    【解析】
    按照分式运算规则运算即可,注意结果的化简.
    【详解】
    解:原式=,故选择B.
    【点睛】
    本题考查了分式的运算规则.
    10、B
    【解析】
    由∠AGE=∠CHE=90°,∠AEG=∠CEH可证明△AEG∽△CEH,根据相似三角形对应边成比例求出GH的长即BD的长即可.
    【详解】
    由题意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,
    ∵AG⊥EH,CH⊥EH,
    ∴∠AGE=∠CHE=90°,
    ∵∠AEG=∠CEH,
    ∴△AEG∽△CEH,
    ∴ == ,即 =,
    解得:GH=,
    则BD=GH=m,
    故选:B.
    【点睛】
    本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出相似三角形.
    11、B
    【解析】
    将圆补充完整,利用圆周角定理找出点E的位置,再根据菱形的性质即可得出△CME为等边三角形,进而即可得出∠AEC的值.
    【详解】
    将圆补充完整,找出点E的位置,如图所示.

    ∵弧AD所对的圆周角为∠ACD、∠AEC,
    ∴图中所标点E符合题意.
    ∵四边形∠CMEN为菱形,且∠CME=60°,
    ∴△CME为等边三角形,
    ∴∠AEC=60°.
    故选B.
    【点睛】
    本题考查了菱形的性质、等边三角形的判定依据圆周角定理,根据圆周角定理结合图形找出点E的位置是解题的关键.
    12、C
    【解析】
    试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
    试题解析:根据题意得:1-x≥0,
    解得:x≤1.
    故选C.
    考点:函数自变量的取值范围.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2.
    【解析】
    试题解析:由于关于x的一元二次方程的一个根是2,把x=2代入方程,得 ,解得,k2=2,k2=2
    当k=2时,由于二次项系数k﹣2=2,方程不是关于x的二次方程,故k≠2.
    所以k的值是2.故答案为2.
    14、
    【解析】
    根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是,从而求出第8个正△A8B8C8的面积.
    【详解】
    正△A1B1C1的面积是,
    而△A2B2C2与△A1B1C1相似,并且相似比是1:2,
    则面积的比是,则正△A2B2C2的面积是×;
    因而正△A3B3C3与正△A2B2C2的面积的比也是,面积是×()2;
    依此类推△AnBnCn与△An-1Bn-1Cn-1的面积的比是,第n个三角形的面积是()n-1.
    所以第8个正△A8B8C8的面积是×()7=.
    故答案为.
    【点睛】
    本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键.
    15、7
    【解析】
    分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.
    详解:把m+=3两边平方得:(m+)2=m2++2=9,
    则m2+=7,
    故答案为:7
    点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.
    16、(写出一个即可)
    【解析】
    【分析】根据点到x轴的距离即点的纵坐标的绝对值,点到y轴的距离即点的横坐标的绝对值,进行求解即可.
    【详解】设P(x,y),
    根据题意,得
    |x|=2,|y|=1,
    即x=±2,y=±1,
    则点P的坐标有(2,1),(2,-1),(-2,1),(2,-1),
    故答案为:(2,1),(2,-1),(-2,1),(2,-1)(写出一个即可).
    【点睛】本题考查了点的坐标和点到坐标轴的距离之间的关系.熟知点到x轴的距离即点的纵坐标的绝对值,点到y轴的距离即点的横坐标的绝对值是解题的关键.
    17、28
    【解析】
    设这种电子产品的标价为x元,
    由题意得:0.9x−21=21×20%,
    解得:x=28,
    所以这种电子产品的标价为28元.
    故答案为28.
    18、-2<x<-1或x>1.
    【解析】
    不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质.
    不等式k1x<+b的解集即k1x-b<的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线y=k1x-b在双曲线下方的自变量x的取值范围即可.

    而直线y=k1x-b的图象可以由y=k1x+b向下平移2b个单位得到,如图所示.根据函数图象的对称性可得:直线y=k1x-b和y=k1x+b与双曲线的交点坐标关于原点对称.
    由关于原点对称的坐标点性质,直线y=k1x-b图象与双曲线图象交点A′、B′的横坐标为A、B两点横坐标的相反数,即为-1,-2.
    ∴由图知,当-2<x<-1或x>1时,直线y=k1x-b图象在双曲线图象下方.
    ∴不等式k1x<+b的解集是-2<x<-1或x>1.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)二次函数的关系式为y=;C(1,0);(2)当m=2时,PD+PE有最大值3;(3)点M的坐标为(,)或(,).
    【解析】
    (1)先求出A、B的坐标,然后把A、B的坐标分别代入二次函数的解析式,解方程组即可得到结论;
    (2)先证明△PDE∽△OAB,得到PD=2PE.设P(m,),则E(m,),PD+PE=3PE,然后配方即可得到结论.
    (3)分两种情况讨论:①当点M在在直线AB上方时,则点M在△ABC的外接圆上,如图1.求出圆心O1的坐标和半径,利用MO1=半径即可得到结论.
    ②当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.求出点O2的坐标,算出DM的长,即可得到结论.
    【详解】
    解:(1)令y==0,得:x=4,∴A(4,0).
    令x=0,得:y=-2,∴B(0,-2).
    ∵二次函数y=的图像经过A、B两点,
    ∴,解得:,
    ∴二次函数的关系式为y=.
    令y==0,解得:x=1或x=4,∴C(1,0).
    (2)∵PD∥x轴,PE∥y轴,
    ∴∠PDE=∠OAB,∠PED=∠OBA,
    ∴△PDE∽△OAB.∴===2,
    ∴PD=2PE.设P(m,),
    则E(m,).
    ∴PD+PE=3PE=3×[()-()]==.
    ∵0<m<4,∴当m=2时,PD+PE有最大值3.
    (3)①当点M在在直线AB上方时,则点M在△ABC的外接圆上,如图1.
    ∵△ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,-t).
    ∴=,解得:t=2,
    ∴圆心O1的坐标为(,-2),∴半径为.
    设M(,y).∵MO1=,∴,
    解得:y=,∴点M的坐标为().
    ②当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.
    ∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x轴,∴∠O1BA=∠OAB,
    ∴∠O1AB=∠OAB,O2在x轴上,∴点O2的坐标为 (,0),∴O2D=1,
    ∴DM==,∴点M的坐标为(,).
    综上所述:点M的坐标为(,)或(,).

    点睛:本题是二次函数的综合题.考查了求二次函数的解析式,求二次函数的最值,圆的有关性质.难度比较大,解答第(3)问的关键是求出△ABC外接圆的圆心坐标.
    20、(1)①直线AB的解析式为y=﹣x+3;理由见解析;②四边形ABCD是菱形,(2)四边形ABCD能是正方形,理由见解析.
    【解析】分析:(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;
    ②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;
    (2)先确定出B(1,),进而得出A(1-t,+t),即:(1-t)(+t)=m,即可得出点D(1,8-),即可得出结论.
    详解:(1)①如图1,

    ∵m=1,
    ∴反比例函数为y=,当x=1时,y=1,
    ∴B(1,1),
    当y=2时,
    ∴2=,
    ∴x=2,
    ∴A(2,2),
    设直线AB的解析式为y=kx+b,
    ∴,
    ∴,
    ∴直线AB的解析式为y=-x+3;
    ②四边形ABCD是菱形,
    理由如下:如图2,

    由①知,B(1,1),
    ∵BD∥y轴,
    ∴D(1,5),
    ∵点P是线段BD的中点,
    ∴P(1,3),
    当y=3时,由y=得,x=,
    由y=得,x=,
    ∴PA=1-=,PC=-1=,
    ∴PA=PC,
    ∵PB=PD,
    ∴四边形ABCD为平行四边形,
    ∵BD⊥AC,
    ∴四边形ABCD是菱形;
    (2)四边形ABCD能是正方形,
    理由:当四边形ABCD是正方形,
    ∴PA=PB=PC=PD,(设为t,t≠0),
    当x=1时,y==,
    ∴B(1,),
    ∴A(1-t,+t),
    ∴(1-t)(+t)=m,
    ∴t=1-,
    ∴点D的纵坐标为+2t=+2(1-)=8-,
    ∴D(1,8-),
    ∴1(8-)=n,
    ∴m+n=2.
    点睛:此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.
    21、(1);(2);(3)
    【解析】
    (1)连接OB、OC,可证△OBC是等边三角形,根据垂径定理可得∠DOC等于30°,OA=OC可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD的值.
    (2)连接OB、OC,可证△OBC是等边三角形,根据垂径定理可得∠DOB等于30°,因为点D为BC的中点,则∠AOB=∠BOC=60°,所以∠AOD等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD、AD的长.
    (3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD的长,再过O点作AE的垂线,利用勾股定理列出方程即可求解.
    【详解】
    (1)如图1:连接OB、OC.
    ∵BC=AO
    ∴OB=OC=BC
    ∴△OBC是等边三角形
    ∴∠BOC=60°
    ∵点D是BC的中点
    ∴∠BOD=
    ∵OA=OC
    ∴=α
    ∴∠AOD=180°-α-α-=150°-2α

    (2)如图2:连接OB、OC、OD.
    由(1)可得:△OBC是等边三角形,∠BOD=
    ∵OB=2,
    ∴OD=OB∙cos=
    ∵B为的中点,
    ∴∠AOB=∠BOC=60°
    ∴∠AOD=90°
    根据勾股定理得:AD=

    (3)①如图3.圆O与圆D相内切时:
    连接OB、OC,过O点作OF⊥AE
    ∵BC是直径,D是BC的中点
    ∴以BC为直径的圆的圆心为D点
    由(2)可得:OD=,圆D的半径为1
    ∴AD=
    设AF=x
    在Rt△AFO和Rt△DOF中,


    解得:
    ∴AE=

    ②如图4.圆O与圆D相外切时:
    连接OB、OC,过O点作OF⊥AE
    ∵BC是直径,D是BC的中点
    ∴以BC为直径的圆的圆心为D点
    由(2)可得:OD=,圆D的半径为1
    ∴AD=
    在Rt△AFO和Rt△DOF中,


    解得:
    ∴AE=

    【点睛】
    本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.
    22、(1)y=﹣5x2+110x+1200;(2) 售价定为189元,利润最大1805元
    【解析】
    利润等于(售价﹣成本)×销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;
    【详解】
    (1)y=(200﹣x﹣170)(40+5x)=﹣5x2+110x+1200;
    (2)y=﹣5x2+110x+1200=﹣5(x﹣11)2+1805,
    ∵抛物线开口向下,
    ∴当x=11时,y有最大值1805,
    答:售价定为189元,利润最大1805元;
    【点睛】
    本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的表达式是解题的关键.
    23、(1)证明见解析;(2)当t=3时,△AEQ的面积最大为cm2;(3)(3,0)或(6,3)或(0,3)
    【解析】
    (1)由三角形ABC为等边三角形,以及AD=BE=CF,进而得出三角形ADF与三角形CFE与三角形BED全等,利用全等三角形对应边相等得到BF=DF=DE,即可得证;(2)先表示出三角形AEC面积,根据EQ与AB平行,得到三角形CEQ与三角形ABC相似,利用相似三角形面积比等于相似比的平方表示出三角形CEQ面积,进而表示出AEQ面积,利用二次函数的性质求出面积最大值,并求出此时Q的坐标即可;(3)当△AEQ的面积最大时,D、E、F都是中点,分两种情形讨论即 可解决问题;
    【详解】
    (1)如图①中,
    ∵C(6,0),
    ∴BC=6
    在等边三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,
    由题意知,当0<t<6时,AD=BE=CF=t,
    ∴BD=CE=AF=6﹣t,
    ∴△ADF≌△CFE≌△BED(SAS),
    ∴EF=DF=DE,
    ∴△DEF是等边三角形,
    ∴不论t如何变化,△DEF始终为等边三角形;

    (2)如图②中,作AH⊥BC于H,则AH=AB•sin60°=3,

    ∴S△AEC=×3×(6﹣t)=,
    ∵EQ∥AB,
    ∴△CEQ∽△ABC,
    ∴=()2=,即S△CEQ=S△ABC=×9=,
    ∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,
    ∵a=﹣<0,
    ∴抛物线开口向下,有最大值,
    ∴当t=3时,△AEQ的面积最大为cm2,
    (3)如图③中,由(2)知,E点为BC的中点,线段EQ为△ABC的中位线,

    当AD为菱形的边时,可得P1(3,0),P3(6,3),
    当AD为对角线时,P2(0,3),
    综上所述,满足条件的点P坐标为(3,0)或(6,3)或(0,3).
    【点睛】
    本题考查四边形综合题、等边三角形的性质和判定、菱形的判定和性质、二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.
    24、(1)作图见解析;(2)作图见解析.
    【解析】
    试题分析:利用正六边形的特性作图即可.
    试题解析:(1)如图所示(答案不唯一):

    (2)如图所示(答案不唯一):

    25、(1);(2)或1.
    【解析】
    (1)把m=2代入两个方程,解方程即可求出AC、BC的长,由C为线段上一点即可得AB的长;(2)分别解两个方程可得,,根据为线段的三等分点分别讨论为线段靠近点的三等分点和为线段靠近点的三等分点两种情况,列关于m的方程即可求出m的值.
    【详解】
    (1)当时,有,,
    由方程,解得,即.
    由方程,解得,即.
    因为为线段上一点,
    所以.
    (2)解方程,得,
    即.
    解方程,得,
    即.
    ①当为线段靠近点的三等分点时,
    则,即,解得.
    ②当为线段靠近点的三等分点时,
    则,即,解得.
    综上可得,或1.
    【点睛】
    本题考查一元一次方程的几何应用,注意讨论C点的位置,避免漏解是解题关键.
    26、(1)8, 6和9;
    (2)甲的成绩比较稳定;(3)变小
    【解析】
    (1)根据众数、中位数的定义求解即可;
    (2)根据平均数的定义先求出甲和乙的平均数,再根据方差公式求出甲和乙的方差,然后进行比较,即可得出答案;
    (3)根据方差公式进行求解即可.
    【详解】
    解:(1)把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8;
    在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9;
    故答案为8,6和9;
    (2)甲的平均数是:(7+8+8+8+9)÷5=8,
    则甲的方差是: [(7-8)2+3(8-8)2+(9-8)2]=0.4,
    乙的平均数是:(6+6+9+9+10)÷5=8,
    则甲的方差是: [2(6-8)2+2(9-8)2+(10-8)2]=2.8,
    所以甲的成绩比较稳定;
    (3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.
    故答案为变小.
    【点睛】
    本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数、中位数和众数.
    27、 (1);(2).
    【解析】
    (1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;
    (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.
    【详解】
    (1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:.
    故答案为;
    (2)画树状图得:

    ∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:.
    【点睛】
    本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.

    相关试卷

    2022年吉林省吉林市第14中学十校联考最后数学试题含解析: 这是一份2022年吉林省吉林市第14中学十校联考最后数学试题含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,抛物线y=3等内容,欢迎下载使用。

    2022年吉林省吉林市吉化九中学中考数学最后冲刺模拟试卷含解析: 这是一份2022年吉林省吉林市吉化九中学中考数学最后冲刺模拟试卷含解析,共24页。试卷主要包含了函数中,x的取值范围是,如图,空心圆柱体的左视图是,sin45°的值等于,下列交通标志是中心对称图形的为等内容,欢迎下载使用。

    2021-2022学年吉林省农安县华家中学十校联考最后数学试题含解析: 这是一份2021-2022学年吉林省农安县华家中学十校联考最后数学试题含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map