搜索
    上传资料 赚现金
    英语朗读宝

    湖南省浏阳市部分校2022年中考数学猜题卷含解析

    湖南省浏阳市部分校2022年中考数学猜题卷含解析第1页
    湖南省浏阳市部分校2022年中考数学猜题卷含解析第2页
    湖南省浏阳市部分校2022年中考数学猜题卷含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省浏阳市部分校2022年中考数学猜题卷含解析

    展开

    这是一份湖南省浏阳市部分校2022年中考数学猜题卷含解析,共24页。试卷主要包含了下列事件中,属于必然事件的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km都需付8元车费),超过3km以后,每增加1km,加收1.6元(不足1km按1km计),某人从甲地到乙地经过的路程是xkm,出租车费为16元,那么x的最大值是(  )
    A.11 B.8 C.7 D.5
    2.如图所示的几何体的俯视图是( )

    A. B. C. D.
    3.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为(  )

    A. B. C. D.1
    4.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为(  )
    A.55×105 B.5.5×104 C.0.55×105 D.5.5×105
    5.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为(  )

    A. B. C. D.
    6.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是(  )

    A.2 B. C. D.2
    7.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G,下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=S△CEF,其中正确的是(  )

    A.①③ B.②④ C.①③④ D.②③④
    8.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x+c的图象可能是( )

    A. B. C. D.
    9.某校九年级一班全体学生2017年中招理化生实验操作考试的成绩统计如下表,根据表中的信息判断,下列结论中错误的是( )
    成绩(分)
    30
    29
    28
    26
    18
    人数(人)
    32
    4
    2
    1
    1
    A.该班共有40名学生
    B.该班学生这次考试成绩的平均数为29.4分
    C.该班学生这次考试成绩的众数为30分
    D.该班学生这次考试成绩的中位数为28分
    10.下列事件中,属于必然事件的是( )
    A.三角形的外心到三边的距离相等
    B.某射击运动员射击一次,命中靶心
    C.任意画一个三角形,其内角和是 180°
    D.抛一枚硬币,落地后正面朝上
    11.实数a在数轴上的位置如图所示,则下列说法不正确的是(  )

    A.a的相反数大于2 B.a的相反数是2 C.|a|>2 D.2a<0
    12.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为( )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为_____cm.

    14.已知一组数据:3,3,4,5,5,则它的方差为____________
    15.分式方程=1的解为_____
    16.如图,为了解全校300名男生的身高情况,随机抽取若干男生进行身高测量,将所得数据(精确到1cm)整理画出频数分布直方图(每组数据含最低值,不含最高值),估计该校男生的身高在170cm﹣175cm之间的人数约有_____人.

    17.如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形的面积之和(即阴影部分)为 cm2(结果保留π).

    18.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为____________________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)计算:+-2〡+6tan30°
    20.(6分) (1)计算:
    (2)先化简,再求值:,其中x是不等式的负整数解.
    21.(6分)已知点P,Q为平面直角坐标系xOy中不重合的两点,以点P为圆心且经过点Q作⊙P,则称点Q为⊙P的“关联点”,⊙P为点Q的“关联圆”.
    (1)已知⊙O的半径为1,在点E(1,1),F(﹣,),M(0,-1)中,⊙O的“关联点”为______;
    (2)若点P(2,0),点Q(3,n),⊙Q为点P的“关联圆”,且⊙Q的半径为,求n的值;
    (3)已知点D(0,2),点H(m,2),⊙D是点H的“关联圆”,直线y=﹣x+4与x轴,y轴分别交于点A,B.若线段AB上存在⊙D的“关联点”,求m的取值范围.
    22.(8分)(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;
    (2)先化简,再求值:()+,其中a=﹣2+.
    23.(8分)如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),
    第一次变化:从左边小桶中拿出两个小球放入中间小桶中;
    第二次变化:从右边小桶中拿出一个小球放入中间小桶中;
    第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍.
    (1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的____倍;
    (2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有_____个小球(用a表示);
    (3)求第三次变化后中间小桶中有多少个小球?

    24.(10分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线.交BC于点E.求证:BE=EC填空:①若∠B=30°,AC=2,则DE=______;
    ②当∠B=______度时,以O,D,E,C为顶点的四边形是正方形.

    25.(10分)如图,平面直角坐标系中,直线与x轴,y轴分别交于A,B两点,与反比例函数的图象交于点.
    求反比例函数的表达式;
    若点C在反比例函数的图象上,点D在x轴上,当四边形ABCD是平行四边形时,求点D的坐标.

    26.(12分)某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
    月份x
    1
    2
    3
    4
    5
    6
    7
    8
    9
    价格y1(元/件)
    560
    580
    600
    620
    640
    660
    680
    700
    720
    随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
    (1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1 与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
    (2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.

    27.(12分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.求证:AD是⊙O的切线.若BC=8,tanB=,求⊙O 的半径.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据等量关系,即(经过的路程﹣3)×1.6+起步价2元≤1.列出不等式求解.
    【详解】
    可设此人从甲地到乙地经过的路程为xkm,
    根据题意可知:(x﹣3)×1.6+2≤1,
    解得:x≤2.
    即此人从甲地到乙地经过的路程最多为2km.
    故选B.
    【点睛】
    考查了一元一次方程的应用.关键是掌握正确理解题意,找出题目中的数量关系.
    2、D
    【解析】
    试题分析:根据俯视图的作法即可得出结论.
    从上往下看该几何体的俯视图是D.故选D.
    考点:简单几何体的三视图.
    3、C
    【解析】
    延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.
    【详解】
    解:延长BC′交AB′于D,连接BB',如图,

    在Rt△AC′B′中,AB′=AC′=2,
    ∵BC′垂直平分AB′,
    ∴C′D=AB=1,
    ∵BD为等边三角形△ABB′的高,
    ∴BD=AB′=,
    ∴BC′=BD-C′D=-1.
    故本题选择C.
    【点睛】
    熟练掌握勾股定理以及由旋转60°得到△ABB′是等边三角形是解本题的关键.
    4、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    将度55000用科学记数法表示为5.5×1.
    故选B.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    5、C
    【解析】
    连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.
    【详解】
    解:连接OD,
    在Rt△OCD中,OC=OD=2,
    ∴∠ODC=30°,CD=
    ∴∠COD=60°,
    ∴阴影部分的面积= ,
    故选:C.

    【点睛】
    本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.
    6、C
    【解析】
    由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.
    【详解】
    解:∵OP平分∠AOB,∠AOB=60°,
    ∴∠AOP=∠COP=30°,
    ∵CP∥OA,
    ∴∠AOP=∠CPO,
    ∴∠COP=∠CPO,
    ∴OC=CP=2,
    ∵∠PCE=∠AOB=60°,PE⊥OB,
    ∴∠CPE=30°,
    ∴CE=CP=1,
    ∴PE=,
    ∴OP=2PE=2,
    ∵PD⊥OA,点M是OP的中点,
    ∴DM=OP=.
    故选C.
    考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.
    7、C
    【解析】
    ①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,
    ②设BC=a,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;
    ③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF为等边三角形,
    ④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和S△ABE,再通过比较大小就可以得出结论.
    【详解】
    ①四边形ABCD是正方形,
    ∴AB═AD,∠B=∠D=90°.
    在Rt△ABE和Rt△ADF中,

    ∴Rt△ABE≌Rt△ADF(HL),
    ∴BE=DF
    ∵BC=CD,
    ∴BC-BE=CD-DF,即CE=CF,
    ∵AE=AF,
    ∴AC垂直平分EF.(故①正确).
    ②设BC=a,CE=y,
    ∴BE+DF=2(a-y)
    EF=y,
    ∴BE+DF与EF关系不确定,只有当y=(2−)a时成立,(故②错误).
    ③当∠DAF=15°时,
    ∵Rt△ABE≌Rt△ADF,
    ∴∠DAF=∠BAE=15°,
    ∴∠EAF=90°-2×15°=60°,
    又∵AE=AF
    ∴△AEF为等边三角形.(故③正确).
    ④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出:
    (x+y)2+y2=(x)2
    ∴x2=2y(x+y)
    ∵S△CEF=x2,S△ABE=y(x+y),
    ∴S△ABE=S△CEF.(故④正确).
    综上所述,正确的有①③④,
    故选C.
    【点睛】
    本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.
    8、A
    【解析】
    由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b-1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b-1)x+c的对称轴x=->0,即可进行判断.
    【详解】
    点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,
    ∴x=ax2+bx+c,
    ∴ax2+(b-1)x+c=0;
    由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,
    ∴方程ax2+(b-1)x+c=0有两个正实数根.
    ∴函数y=ax2+(b-1)x+c与x轴有两个交点,
    又∵->0,a>0
    ∴-=-+>0
    ∴函数y=ax2+(b-1)x+c的对称轴x=->0,
    ∴A符合条件,
    故选A.
    9、D
    【解析】
    A.∵32+4+2+1+1=40(人),故A正确;
    B. ∵(30×32+29×4+28×2+26+18)÷40=29.4(分),故B正确;
    C. ∵成绩是30分的人有32人,最多,故C 正确;
    D. 该班学生这次考试成绩的中位数为30分,故D错误;
    10、C
    【解析】
    分析:必然事件就是一定发生的事件,依据定义即可作出判断.
    详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;
    B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;
    C、三角形的内角和是180°,是必然事件,故本选项符合题意;
    D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;
    故选C.
    点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    11、B
    【解析】
    试题分析:由数轴可知,a<-2,A、a的相反数>2,故本选项正确,不符合题意;B、a的相反数≠2,故本选项错误,符合题意;C、a的绝对值>2,故本选项正确,不符合题意;D、2a<0,故本选项正确,不符合题意.
    故选B.
    考点:实数与数轴.
    12、A
    【解析】
    过E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依据△ABC∽△GEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论.
    【详解】
    过E作EG∥BC,交AC于G,则∠BCE=∠CEG.
    ∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.
    ∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.
    ∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5k.
    ∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.
    故选A.

    【点睛】
    本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2
    【解析】
    要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.
    【详解】
    解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.
    ∵圆柱底面的周长为6cm,圆柱高为2cm,
    ∴AB=2cm,BC=BC′=3cm,
    ∴AC2=22+32=13,
    ∴AC=cm,
    ∴这圈金属丝的周长最小为2AC=2cm.
    故答案为2.

    【点睛】
    本题考查了平面展开−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.
    14、
    【解析】
    根据题意先求出这组数据的平均数是:(3+3+4+5+5)÷5=4,再根据方差公式求出这组数据的方差为:×[(3–4)2+(3–4)2+(4–4)2+(5–4)2+(5–4)2]=.
    故答案为.
    15、x=0.1
    【解析】
    分析:方程两边都乘以最简公分母,化为整式方程,然后解方程,再进行检验.
    详解:方程两边都乘以2(x2﹣1)得,
    8x+2﹣1x﹣1=2x2﹣2,
    解得x1=1,x2=0.1,
    检验:当x=0.1时,x﹣1=0.1﹣1=﹣0.1≠0,
    当x=1时,x﹣1=0,
    所以x=0.1是方程的解,
    故原分式方程的解是x=0.1.
    故答案为:x=0.1
    点睛:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
    16、1
    【解析】
    用总人数300乘以样本中身高在170cm-175cm之间的人数占被调查人数的比例.
    【详解】
    估计该校男生的身高在170cm-175cm之间的人数约为300×=1(人),
    故答案为1.
    【点睛】
    本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    17、.
    【解析】
    图中阴影部分的面积就是两个扇形的面积,圆A,B的半径为2cm,则根据扇形面积公式可得阴影面积.
    【详解】
    (cm2).
    故答案为.
    考点:1、扇形的面积公式;2、两圆相外切的性质.
    18、(6053,2).
    【解析】
    根据前四次的坐标变化总结规律,从而得解.
    【详解】
    第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…
    发现点P的位置4次一个循环,
    ∵2017÷4=504余1,
    P2017的纵坐标与P1相同为2,横坐标为5+3×2016=6053,
    ∴P2017(6053,2),
    故答案为(6053,2).
    考点:坐标与图形变化﹣旋转;规律型:点的坐标.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、10 +
    【解析】
    根据实数的性质进行化简即可计算.
    【详解】
    原式=9-1+2-+6×
    =10-
    =10 +
    【点睛】
    此题主要考查实数的计算,解题的关键是熟知实数的性质.
    20、(1)5;(2),3.
    【解析】
    试题分析:(1) 原式先计算乘方运算,再计算乘运算,最后算加减运算即可得到结果;
    (2)先化简,再求得x的值,代入计算即可.
    试题解析:
    (1)原式=1-2+1×2+4=5;
    (2)原式=×=,
    当3x+7>1,即 x>-2时的负整数时,(x=-1)时,原式==3..
    21、(1)F,M;(1)n=1或﹣1;(3)≤m≤或 ≤m≤.
    【解析】
    (1)根据定义,认真审题即可解题,
    (1)在直角三角形PHQ中勾股定理解题即可,
    (3)当⊙D与线段AB相切于点T时,由sin∠OBA=,得DT=DH1=,进而求出m1=即可,②当⊙D过点A时,连接AD.由勾股定理得DA==DH1=即可解题.
    【详解】
    解:(1)∵OF=OM=1,
    ∴点F、点M在⊙上,
    ∴F、M是⊙O的“关联点”,
    故答案为F,M.
    (1)如图1,过点Q作QH⊥x轴于H.

    ∵PH=1,QH=n,PQ=.
    ∴由勾股定理得,PH1+QH1=PQ1,
    即11+n1=()1,
    解得,n=1或﹣1.
    (3)由y=﹣x+4,知A(3,0),B(0,4)
    ∴可得AB=5
    ①如图1(1),当⊙D与线段AB相切于点T时,连接DT.

    则DT⊥AB,∠DTB=90°
    ∵sin∠OBA=,
    ∴可得DT=DH1=,
    ∴m1=,
    ②如图1(1),当⊙D过点A时,连接AD.

    由勾股定理得DA==DH1=.
    综合①②可得:≤m≤或 ≤m≤.
    【点睛】
    本题考查圆的新定义问题, 三角函数和勾股定理的应用,难度较大,分类讨论,迁移知识理解新定义是解题关键.
    22、(1)-1;(2).
    【解析】
    (1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;
    (2)先化简原式,然后将a的值代入即可求出答案.
    【详解】
    (1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1;
    (2)原式=+
    =
    当a=﹣2+时,原式==.
    【点睛】
    本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.
    23、 (1)5;(2)(a+3);(3)第三次变化后中间小桶中有2个小球.
    【解析】
    (1)(2)根据材料中的变化方法解答;
    (3)设原来每个捅中各有a个小球,根据第三次变化方法列出方程并解答.
    【详解】
    解:(1)依题意得:(3+2)÷(3﹣2)=5
    故答案是:5;
    (2)依题意得:a+2+1=a+3;
    故答案是:(a+3)
    (3)设原来每个捅中各有a个小球,第三次从中间桶拿出x个球,
    依题意得:a﹣1+x=2a
    x=a+1
    所以 a+3﹣x=a+3﹣(a+1)=2
    答:第三次变化后中间小桶中有2个小球.
    【点睛】
    考查了一元一次方程的应用和列代数式,解题的关键是找到描述语,列出等量关系,得到方程并解答.
    24、(1)见解析;(2)①3;②1.
    【解析】
    (1)证出EC为⊙O的切线;由切线长定理得出EC=ED,再求得EB=ED,即可得出结论;
    (2)①由含30°角的直角三角形的性质得出AB,由勾股定理求出BC,再由直角三角形斜边上的中线性质即可得出DE;
    ②由等腰三角形的性质,得到∠ODA=∠A=1°,于是∠DOC=90°然后根据有一组邻边相等的矩形是正方形,即可得到结论.
    【详解】
    (1)证明:连接DO.

    ∵∠ACB=90°,AC为直径,
    ∴EC为⊙O的切线;
    又∵ED也为⊙O的切线,
    ∴EC=ED,
    又∵∠EDO=90°,
    ∴∠BDE+∠ADO=90°,
    ∴∠BDE+∠A=90°
    又∵∠B+∠A=90°,
    ∴∠BDE=∠B,
    ∴BE=ED,
    ∴BE=EC;
    (2)解:①∵∠ACB=90°,∠B=30°,AC=2,
    ∴AB=2AC=4,
    ∴BC==6,
    ∵AC为直径,
    ∴∠BDC=∠ADC=90°,
    由(1)得:BE=EC,
    ∴DE=BC=3,
    故答案为3;
    ②当∠B=1°时,四边形ODEC是正方形,理由如下:
    ∵∠ACB=90°,
    ∴∠A=1°,
    ∵OA=OD,
    ∴∠ADO=1°,
    ∴∠AOD=90°,
    ∴∠DOC=90°,
    ∵∠ODE=90°,
    ∴四边形DECO是矩形,
    ∵OD=OC,
    ∴矩形DECO是正方形.
    故答案为1.
    【点睛】
    本题考查了圆的切线性质、解直角三角形的知识、切线长定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    25、(1)y= (1)(1,0)
    【解析】
    (1)将点M的坐标代入一次函数解析式求得a的值;然后将点M的坐标代入反比例函数解析式,求得k的值即可;
    (1)根据平行四边形的性质得到BC∥AD且BD=AD,结合图形与坐标的性质求得点D的坐标.
    【详解】
    解:(1)∵点M(a,4)在直线y=1x+1上,
    ∴4=1a+1,
    解得a=1,
    ∴M(1,4),将其代入y=得到:k=xy=1×4=4,
    ∴反比例函数y=(x>0)的表达式为y=;
    (1)∵平面直角坐标系中,直线y=1x+1与x轴,y轴分别交于A,B两点,
    ∴当x=0时,y=1.
    当y=0时,x=﹣1,
    ∴B(0,1),A(﹣1,0).
    ∵BC∥AD,
    ∴点C的纵坐标也等于1,且点C在反比例函数图象上,
    将y=1代入y=,得1=,
    解得x=1,
    ∴C(1,1).
    ∵四边形ABCD是平行四边形,
    ∴BC∥AD且BD=AD,
    由B(0,1),C(1,1)两点的坐标知,BC∥AD.
    又BC=1,
    ∴AD=1,
    ∵A(﹣1,0),点D在点A的右侧,
    ∴点D的坐标是(1,0).
    【点睛】
    考查了反比例函数与一次函数交点问题.熟练掌握平行四边形的性质和函数图象上点的坐标特征是解决问题的关键,难度适中.
    26、(1)y1=20x+540,y2=10x+1;(2)去年4月销售该配件的利润最大,最大利润为450万元.
    【解析】
    (1)利用待定系数法,结合图象上点的坐标求出一次函数解析式即可;
    (2)根据生产每件配件的人力成本为50元,其它成本30元,以及售价销量进而求出最大利润.
    【详解】
    (1)利用表格得出函数关系是一次函数关系:
    设y1=kx+b,

    解得:
    ∴y1=20x+540,
    利用图象得出函数关系是一次函数关系:
    设y2=ax+c,

    解得:
    ∴y2=10x+1.
    (2)去年1至9月时,销售该配件的利润w=p1(1000﹣50﹣30﹣y1),
    =(0.1x+1.1)(1000﹣50﹣30﹣20x﹣540)=﹣2x2+16x+418,
    =﹣2( x﹣4)2+450,(1≤x≤9,且x取整数)
    ∵﹣2<0,1≤x≤9,∴当x=4时,w最大=450(万元);
    去年10至12月时,销售该配件的利润w=p2(1000﹣50﹣30﹣y2)
    =(﹣0.1x+2.9)(1000﹣50﹣30﹣10x﹣1),
    =( x﹣29)2,(10≤x≤12,且x取整数),
    ∵10≤x≤12时,∴当x=10时,w最大=361(万元),
    ∵450>361,∴去年4月销售该配件的利润最大,最大利润为450万元.
    【点睛】
    此题主要考查了一次函数的应用,根据已知得出函数关系式以及利用函数增减性得出函数最值是解题关键.
    27、(1)证明见解析;(2).
    【解析】
    (1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;
    (2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.
    【详解】
    (1)证明:连接,





    在中,,


    则为圆的切线;
    (2)设圆的半径为,
    在中,,
    根据勾股定理得:,

    在中,,

    根据勾股定理得:,
    在中,,即,
    解得:.
    【点睛】
    此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.

    相关试卷

    2022届江汉区部分校中考猜题数学试卷含解析:

    这是一份2022届江汉区部分校中考猜题数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022届湖南省浏阳市部分校中考数学对点突破模拟试卷含解析:

    这是一份2022届湖南省浏阳市部分校中考数学对点突破模拟试卷含解析,共21页。

    2022届湖南省浏阳市部分校中考数学考试模拟冲刺卷含解析:

    这是一份2022届湖南省浏阳市部分校中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了答题时请按要求用笔,某商品的进价为每件元等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map