湖南省张家界市永定区重点中学2022年中考三模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )
A. B. C.2 D.2
2.已知二次函数(为常数),当自变量的值满足时,与其对应的函数值的最小值为4,则的值为( )
A.1或5 B.或3 C.或1 D.或5
3.的算术平方根是( )
A.4 B.±4 C.2 D.±2
4.为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:﹣6,﹣1,x,2,﹣1,1.若这组数据的中位数是﹣1,则下列结论错误的是( )
A.方差是8 B.极差是9 C.众数是﹣1 D.平均数是﹣1
5.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是( )
A.a>﹣4 B.bd>0 C.|a|>|b| D.b+c>0
6.在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是( )
A.千里江山图
B.京津冀协同发展
C.内蒙古自治区成立七十周年
D.河北雄安新区建立纪念
7.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为( )
A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm
8.估计5﹣的值应在( )
A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间
9.如图直线y=mx与双曲线y=交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是( )
A.1 B.2 C.3 D.4
10.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是( )
A.x>﹣2 B.x>0 C.x>1 D.x<1
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,的半径为,点,,,都在上,,将扇形绕点顺时针旋转后恰好与扇形重合,则的长为_____.(结果保留)
12.如图,矩形ABCD中,AB=2,点E在AD边上,以E为圆心,EA长为半径的⊙E与BC相切,交CD于点F,连接EF.若扇形EAF的面积为,则BC的长是_____.
13.将一个含45°角的三角板,如图摆放在平面直角坐标系中,将其绕点顺时针旋转75°,点的对应点恰好落在轴上,若点的坐标为,则点的坐标为____________.
14.如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则的长度为______.
15.在△ABC中,∠C=30°,∠A﹣∠B=30°,则∠A=_____.
16.如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数y=(x>0)的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为,则k= .
三、解答题(共8题,共72分)
17.(8分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)
18.(8分)如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.
(1)把△ABC绕点A旋转到图1,BD,CE的关系是 (选填“相等”或“不相等”);简要说明理由;
(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD= ,简要说明计算过程;
(3)在(2)的条件下写出旋转过程中线段PD的最小值为 ,最大值为 .
19.(8分)如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AE=ED,DF=DC,连结EF并延长交BC的延长线于点G,连结BE.求证:△ABE∽△DEF.若正方形的边长为4,求BG的长.
20.(8分)如图,点A、B在⊙O上,点O是⊙O的圆心,请你只用无刻度的直尺,分别画出图①和图②中∠A的余角.
(1)图①中,点C在⊙O上;
(2)图②中,点C在⊙O内;
21.(8分)如图,在△ABC中,D是AB边上任意一点,E是BC边中点,过点C作AB的平行线,交DE的延长线于点F,连接BF,CD.
(1)求证:四边形CDBF是平行四边形;
(2)若∠FDB=30°,∠ABC=45°,BC=4,求DF的长.
22.(10分)某商人制成了一个如图所示的转盘,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A”,则收费2元,若指针指向字母“B”,则奖励3元;若指针指向字母“C”,则奖励1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?
23.(12分)如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.
(1)求抛物线的解析式;
(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.
24.如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.
(1)图1中3条弧的弧长的和为 ,图2中4条弧的弧长的和为 ;
(2)求图m中n条弧的弧长的和(用n表示).
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.
【详解】过A作AD⊥BC于D,
∵△ABC是等边三角形,
∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,
∵AD⊥BC,
∴BD=CD=1,AD=BD=,
∴△ABC的面积为BC•AD==,
S扇形BAC==,
∴莱洛三角形的面积S=3×﹣2×=2π﹣2,
故选D.
【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.
2、D
【解析】
由解析式可知该函数在时取得最小值0,抛物线开口向上,当时,y随x的增大而增大;当时,y随x的增大而减小;根据时,函数的最小值为4可分如下三种情况:①若,时,y取得最小值4;②若-1<h<3时,当x=h时,y取得最小值为0,不是4;③若,当x=3时,y取得最小值4,分别列出关于h的方程求解即可.
【详解】
解:∵当x>h时,y随x的增大而增大,当时,y随x的增大而减小,并且抛物线开口向上,
∴①若,当时,y取得最小值4,
可得:4,
解得或(舍去);
②若-1<h<3时,当x=h时,y取得最小值为0,不是4,
∴此种情况不符合题意,舍去;
③若-1≤x≤3<h,当x=3时,y取得最小值4,
可得:,
解得:h=5或h=1(舍).
综上所述,h的值为-3或5,
故选:D.
【点睛】
本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.
3、C
【解析】
先求出的值,然后再利用算术平方根定义计算即可得到结果.
【详解】
=4,
4的算术平方根是2,
所以的算术平方根是2,
故选C.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.
4、A
【解析】
根据题意可知x=-1,
平均数=(-6-1-1-1+2+1)÷6=-1,
∵数据-1出现两次最多,
∴众数为-1,
极差=1-(-6)=2,
方差= [(-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2]=2.
故选A.
5、C
【解析】
根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.
【详解】
解:由数轴上点的位置,得
a<﹣4<b<0<c<1<d.
A、a<﹣4,故A不符合题意;
B、bd<0,故B不符合题意;
C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;
D、b+c<0,故D不符合题意;
故选:C.
【点睛】
本题考查了有理数大小的比较、有理数的运算,绝对值的性质,熟练掌握相关的知识是解题的关键
6、C
【解析】
根据中心对称图形的概念求解.
【详解】
解:A选项是轴对称图形,不是中心对称图形,故本选项错误;
B选项不是中心对称图形,故本选项错误;
C选项为中心对称图形,故本选项正确;
D选项不是中心对称图形,故本选项错误.
故选C.
【点睛】
本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.
7、B
【解析】
【分析】由已知可证△ABO∽CDO,故 ,即.
【详解】由已知可得,△ABO∽CDO,
所以, ,
所以,,
所以,AB=5.4
故选B
【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质.
8、C
【解析】
先化简二次根式,合并后,再根据无理数的估计解答即可.
【详解】
5﹣=,
∵49<54<64,
∴7<<8,
∴5﹣的值应在7和8之间,
故选C.
【点睛】
本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.
9、B
【解析】
此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=1S△AOM并结合反比例函数系数k的几何意义得到k的值.
【详解】
根据双曲线的对称性可得:OA=OB,则S△ABM=1S△AOM=1,S△AOM=|k|=1,
则k=±1.又由于反比例函数图象位于一三象限,k>0,所以k=1.
故选B.
【点睛】
本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.
10、C
【解析】
试题分析:当x>1时,x+b>kx+4,
即不等式x+b>kx+4的解集为x>1.
故选C.
考点:一次函数与一元一次不等式.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、.
【解析】
根据题意先利用旋转的性质得到∠BOD=120°,则∠AOD=150°,然后根据弧长公式计算即可.
【详解】
解:∵扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,
∴∠BOD=120°,
∴∠AOD=∠AOB+∠BOD=30°+120°=150°,
∴的长=.
故答案为:.
【点睛】
本题考查了弧长的计算及旋转的性质,掌握弧长公式l=(弧长为l,圆心角度数为n,圆的半径为R)是解题的关键.
12、1
【解析】
分析:设∠AEF=n°,由题意,解得n=120,推出∠AEF=120°,在Rt△EFD中,求出DE即可解决问题.
详解:设∠AEF=n°,
由题意,解得n=120,
∴∠AEF=120°,
∴∠FED=60°,
∵四边形ABCD是矩形,
∴BC=AD,∠D=90°,
∴∠EFD=10°,
∴DE=EF=1,
∴BC=AD=2+1=1,
故答案为1.
点睛:本题考查切线的性质、矩形的性质、扇形的面积公式、直角三角形10度角性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
13、
【解析】
先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角边为,从而求出B′的坐标.
【详解】
解:∵∠ACB=45°,∠BCB′=75°,
∴∠ACB′=120°,
∴∠ACO=60°,
∴∠OAC=30°,
∴AC=2OC,
∵点C的坐标为(1,0),
∴OC=1,
∴AC=2OC=2,
∵△ABC是等腰直角三角形,
∴B′点的坐标为
【点睛】
此题主要考查了旋转的性质及坐标与图形变换,同时也利用了直角三角形性质,首先利用直角三角形的性质得到有关线段的长度,即可解决问题.
14、
【解析】
试题解析:连接AE,
在Rt三角形ADE中,AE=4,AD=2,
∴∠DEA=30°,
∵AB∥CD,
∴∠EAB=∠DEA=30°,
∴的长度为:=.
考点:弧长的计算.
15、90°.
【解析】
根据三角形内角和得到∠A+∠B+∠C=180°,而∠C=30°,则可计算出∠A+∠B+=150°,由于∠A﹣∠B=30°,把两式相加消去∠B即可求得∠A的度数.
【详解】
解:∵∠A+∠B+∠C=180°,∠C=30°,
∴∠A+∠B+=150°,
∵∠A﹣∠B=30°,
∴2∠A=180°,
∴∠A=90°.
故答案为:90°.
【点睛】
本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.
16、1.
【解析】
先根据反比例函数比例系数k的几何意义得到,再根据相似三角形的面积比等于相似比的平方,得到用含k的代数式表示3个阴影部分的面积之和,然后根据三个阴影部分的面积之和为,列出方程,解方程即可求出k的值.
【详解】
解:根据题意可知,
轴,
设图中阴影部分的面积从左向右依次为,
则,
,
解得:k=2.
故答案为1.
考点:反比例函数综合题.
三、解答题(共8题,共72分)
17、热气球离地面的高度约为1米.
【解析】
作AD⊥BC交CB的延长线于D,设AD为x,表示出DB和DC,根据正切的概念求出x的值即可.
【详解】
解:作AD⊥BC交CB的延长线于D,
设AD为x,
由题意得,∠ABD=45°,∠ACD=35°,
在Rt△ADB中,∠ABD=45°,
∴DB=x,
在Rt△ADC中,∠ACD=35°,
∴tan∠ACD= ,
∴ = ,
解得,x≈1.
答:热气球离地面的高度约为1米.
【点睛】
考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形.
18、(1)BD,CE的关系是相等;(2)或;(3)1,1
【解析】
分析:(1)依据△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,进而得到△ABD≌△ACE,可得出BD=CE;
(2)分两种情况:依据∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到=,进而得到PD=;依据∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到,进而得出PB=,PD=BD+PB=;
(3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值.
详解:(1)BD,CE的关系是相等.
理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,
∴BA=CA,∠BAD=∠CAE,DA=EA,
∴△ABD≌△ACE,
∴BD=CE;
故答案为相等.
(2)作出旋转后的图形,若点C在AD上,如图2所示:
∵∠EAC=90°,
∴CE=,
∵∠PDA=∠AEC,∠PCD=∠ACE,
∴△PCD∽△ACE,
∴,
∴PD=;
若点B在AE上,如图2所示:
∵∠BAD=90°,
∴Rt△ABD中,BD=,BE=AE﹣AB=2,
∵∠ABD=∠PBE,∠BAD=∠BPE=90°,
∴△BAD∽△BPE,
∴,即,
解得PB=,
∴PD=BD+PB=+=,
故答案为或;
(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.
如图3所示,分两种情况讨论:
在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.
①当小三角形旋转到图中△ACB的位置时,
在Rt△ACE中,CE==4,
在Rt△DAE中,DE=,
∵四边形ACPB是正方形,
∴PC=AB=3,
∴PE=3+4=1,
在Rt△PDE中,PD=,
即旋转过程中线段PD的最小值为1;
②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,
此时,DP'=4+3=1,
即旋转过程中线段PD的最大值为1.
故答案为1,1.
点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题.
19、(1)见解析;(2)BG=BC+CG=1.
【解析】
(1)利用正方形的性质,可得∠A=∠D,根据已知可得AE:AB=DF:DE,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;
(2)根据相似三角形的预备定理得到△EDF∽△GCF,再根据相似的性质即可求得CG的长,那么BG的长也就不难得到.
【详解】
(1)证明:∵ABCD为正方形,
∴AD=AB=DC=BC,∠A=∠D=90 °.
∵AE=ED,
∴AE:AB=1:2.
∵DF=DC,
∴DF:DE=1:2,
∴AE:AB=DF:DE,
∴△ABE∽△DEF;
(2)解:∵ABCD为正方形,
∴ED∥BG,
∴△EDF∽△GCF,
∴ED:CG=DF:CF.
又∵DF=DC,正方形的边长为4,
∴ED=2,CG=6,
∴BG=BC+CG=1.
【点睛】
本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.
20、图形见解析
【解析】试题分析:(1)根据同弧所对的圆周角相等和直径所对的圆周角为直角画图即可;(2)延长AC交⊙O于点E ,利用(1)的方法画图即可.
试题解析:
如图①∠DBC就是所求的角;
如图②∠FBE就是所求的角
21、(1)证明见解析;(2)1.
【解析】
(1)先证明出△CEF≌△BED,得出CF=BD即可证明四边形CDBF是平行四边形;
(2)作EM⊥DB于点M,根据平行四边形的性质求出BE,DF的值,再根据三角函数值求出EM的值,∠EDM=30°,由此可得出结论.
【详解】
解:(1)证明:∵CF∥AB,
∴∠ECF=∠EBD.
∵E是BC中点,
∴CE=BE.
∵∠CEF=∠BED,
∴△CEF≌△BED.
∴CF=BD.
∴四边形CDBF是平行四边形.
(2)解:如图,作EM⊥DB于点M,
∵四边形CDBF是平行四边形,BC=,
∴,DF=2DE.
在Rt△EMB中,EM=BE•sin∠ABC=2,
在Rt△EMD中,∵∠EDM=30°,
∴DE=2EM=4,
∴DF=2DE=1.
【点睛】
本题考查了平行四边形的判定与全等三角形的判定与性质,解题的关键是熟练的掌握平行四边形的判定与全等三角形的判定与性质.
22、商人盈利的可能性大.
【解析】
试题分析:根据几何概率的定义,面积比即概率.图中A,B,C所占的面积与总面积之比即为A,B,C各自的概率,算出相应的可能性,乘以钱数,比较即可.
试题解析:商人盈利的可能性大.
商人收费:80××2=80(元),商人奖励:80××3+80××1=60(元),因为80>60,所以商人盈利的可能性大.
23、(1);(2)(0,)或(0,4).
【解析】
试题分析:(1)将A点的坐标代入抛物线中,即可得出二次函数的解析式;
(2)本题要分两种情况进行讨论:①PB=AB,先根据抛物线的解析式求出B点的坐标,即可得出OB的长,进而可求出AB的长,也就知道了PB的长,由此可求出P点的坐标;
②PA=AB,此时P与B关于x轴对称,由此可求出P点的坐标.
试题解析:(1)∵抛物线经过点A(1,0),∴,∴;
(2)∵抛物线的解析式为,∴令,则,∴B点坐标(0,﹣4),AB=,
①当PB=AB时,PB=AB=,∴OP=PB﹣OB=.∴P(0,),
②当PA=AB时,P、B关于x轴对称,∴P(0,4),因此P点的坐标为(0,)或(0,4).
考点:二次函数综合题.
24、 (1)π, 2π;(2)(n﹣2)π.
【解析】
(1)利用弧长公式和三角形和四边形的内角和公式代入计算;
(2)利用多边形的内角和公式和弧长公式计算.
【详解】
(1)利用弧长公式可得
=π,
因为n1+n2+n3=180°.
同理,四边形的==2π,
因为四边形的内角和为360度;
(2)n条弧==(n﹣2)π.
【点睛】
本题考查了多边形的内角和定理以及扇形的面积公式和弧长的计算公式,理解公式是关键.
2023年湖南省张家界市永定区中考数学一模试卷(含答案解析): 这是一份2023年湖南省张家界市永定区中考数学一模试卷(含答案解析),共16页。试卷主要包含了 2023的相反数是, 下列各组数中,不相等的是, 11的算术平方根是, 已知一组数据等内容,欢迎下载使用。
2023年湖南省张家界市永定区中考一模数学试题: 这是一份2023年湖南省张家界市永定区中考一模数学试题,共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
湖南省张家界市永定区民族中学2021-2022学年十校联考最后数学试题含解析: 这是一份湖南省张家界市永定区民族中学2021-2022学年十校联考最后数学试题含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。