|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖北省武汉武昌区四校联考2022年中考数学模拟试题含解析
    立即下载
    加入资料篮
    湖北省武汉武昌区四校联考2022年中考数学模拟试题含解析01
    湖北省武汉武昌区四校联考2022年中考数学模拟试题含解析02
    湖北省武汉武昌区四校联考2022年中考数学模拟试题含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省武汉武昌区四校联考2022年中考数学模拟试题含解析

    展开
    这是一份湖北省武汉武昌区四校联考2022年中考数学模拟试题含解析,共24页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是(  )

    A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>3
    2.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为(  )
    A.4 B.3 C.2 D.1
    3.已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是(   )
    A.c=4 B.﹣5<c≤4 C.﹣5<c<3或c=4 D.﹣5<c≤3或c=4
    4.如图,A,C,E,G四点在同一直线上,分别以线段AC,CE,EG为边在AG同侧作等边三角形△ABC,△CDE,△EFG,连接AF,分别交BC,DC,DE于点H,I,J,若AC=1,CE=2,EG=3,则△DIJ的面积是(  )

    A. B. C. D.
    5.已知x=2﹣,则代数式(7+4)x2+(2+)x+ 的值是(  )
    A.0 B. C.2+ D.2﹣
    6.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )
    A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=1035
    7.如图是某几何体的三视图及相关数据,则该几何体的全面积是(  )

    A.15π B.24π C.20π D.10π
    8.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为(  )
    A.﹣=100 B.﹣=100
    C.﹣=100 D.﹣=100
    9.下列图形中是轴对称图形但不是中心对称图形的是(  )
    A. B. C. D.
    10.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F, S△AEF=3,则S△FCD为(  )

    A.6 B.9 C.12 D.27
    11.如图,在数轴上有点O,A,B,C对应的数分别是0,a,b,c,AO=2,OB=1,BC=2,则下列结论正确的是( )

    A. B. C. D.
    12.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于(  )

    A.30° B.35° C.40° D.50°
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在边长为1正方形ABCD中,点P是边AD上的动点,将△PAB沿直线BP翻折,点A的对应点为点Q,连接BQ、DQ.则当BQ+DQ的值最小时,tan∠ABP=_____.

    14.若从 -3,-1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是_________.
    15.函数y=+中,自变量x的取值范围是_____.
    16.在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间.甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲、乙行驶过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.则当乙车到达A地时,甲车已在C地休息了_____小时.

    17.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.
    18.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为__.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)(1)如图1,半径为2的圆O内有一点P,切OP=1,弦AB过点P,则弦AB长度的最大值为__________;最小值为 ___________.

    图 ①
    (2)如图2,△ABC是葛叔叔家的菜地示意图,其中∠ABC=90°,AB=80米,BC=60米,现在他利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔想建的鱼塘是四边形ABCD,且满足∠ADC=60°,你认为葛叔叔的想法能实现吗?若能,求出这个四边形鱼塘面积和周长的最大值;若不能,请说明理由.

    图 ②
    20.(6分)A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)
    (1)根据题意,填写下表:
    时间x(h)
    与A地的距离
    0.5
    1.8
    _____
    甲与A地的距离(km)
    5
      
    20
    乙与A地的距离(km)
    0
    12
      
    (2)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x的函数解析式;
    (3)设甲,乙两人之间的距离为y,当y=12时,求x的值.
    21.(6分)如图1,□OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y= (x>0)的图象经过点B.
    (1)求点B的坐标和反比例函数的关系式;
    (2)如图2,将线段OA延长交y= (x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,①求直线BD的解析式;②求线段ED的长度.

    22.(8分)如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.
    (1)求证:∠DAC=∠DCE;
    (2)若AB=2,sin∠D=,求AE的长.

    23.(8分)如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据≈1.414,≈1.732)

    24.(10分)已知抛物线y=x2+bx+c(b,c是常数)与x轴相交于A,B两点(A在B的左侧),与y轴交于点C.
    (1)当A(﹣1,0),C(0,﹣3)时,求抛物线的解析式和顶点坐标;
    (2)P(m,t)为抛物线上的一个动点.
    ①当点P关于原点的对称点P′落在直线BC上时,求m的值;
    ②当点P关于原点的对称点P′落在第一象限内,P′A2取得最小值时,求m的值及这个最小值.
    25.(10分)计算:﹣(﹣2)0+|1﹣|+2cos30°.
    26.(12分)如图,分别延长▱ABCD的边到,使,连接EF,分别交于,连结求证:.

    27.(12分)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有两种型号的挖掘机,已知3台型和5台型挖掘机同时施工一小时挖土165立方米;4台型和7台型挖掘机同时施工一小时挖土225立方米.每台型挖掘机一小时的施工费用为300元,每台型挖掘机一小时的施工费用为180元.分别求每台型, 型挖掘机一小时挖土多少立方米?若不同数量的型和型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    试题分析:观察图象可知,抛物线y=x2+bx+c与x轴的交点的横坐标分别为(﹣1,0)、(1,0),
    所以当y<0时,x的取值范围正好在两交点之间,即﹣1<x<1.
    故选B.
    考点:二次函数的图象.106144
    2、A
    【解析】
    分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.
    详解:根据题意,得:=2x
    解得:x=3,
    则这组数据为6、7、3、9、5,其平均数是6,
    所以这组数据的方差为 [(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,
    故选A.
    点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.
    3、D
    【解析】
    解:由对称轴x=2可知:b=﹣4,
    ∴抛物线y=x2﹣4x+c,
    令x=﹣1时,y=c+5,
    x=3时,y=c﹣3,
    关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围有实数根,
    当△=0时,
    即c=4,
    此时x=2,满足题意.
    当△>0时,
    (c+5)(c﹣3)≤0,
    ∴﹣5≤c≤3,
    当c=﹣5时,
    此时方程为:﹣x2+4x+5=0,
    解得:x=﹣1或x=5不满足题意,
    当c=3时,
    此时方程为:﹣x2+4x﹣3=0,
    解得:x=1或x=3此时满足题意,
    故﹣5<c≤3或c=4,
    故选D.
    点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.
    4、A
    【解析】
    根据等边三角形的性质得到FG=EG=3,∠AGF=∠FEG=60°,根据三角形的内角和得到∠AFG=90°,根据相似三角形的性质得到==,==,根据三角形的面积公式即可得到结论.
    【详解】
    ∵AC=1,CE=2,EG=3,
    ∴AG=6,
    ∵△EFG是等边三角形,
    ∴FG=EG=3,∠AGF=∠FEG=60°,
    ∵AE=EF=3,
    ∴∠FAG=∠AFE=30°,
    ∴∠AFG=90°,
    ∵△CDE是等边三角形,
    ∴∠DEC=60°,
    ∴∠AJE=90°,JE∥FG,
    ∴△AJE∽△AFG,
    ∴==,
    ∴EJ=,
    ∵∠BCA=∠DCE=∠FEG=60°,
    ∴∠BCD=∠DEF=60°,
    ∴∠ACI=∠AEF=120°,
    ∵∠IAC=∠FAE,
    ∴△ACI∽△AEF,
    ∴==,
    ∴CI=1,DI=1,DJ=,
    ∴IJ=,
    ∴=•DI•IJ=××.
    故选:A.
    【点睛】
    本题考查了等边三角形的性质,相似三角形的判定和性质,三角形的面积的计算,熟练掌握相似三角形的性质和判定是解题的关键.
    5、C
    【解析】
    把x的值代入代数式,运用完全平方公式和平方差公式计算即可
    【详解】
    解:当x=2﹣时,
    (7+4)x2+(2+)x+
    =(7+4)(2﹣)2+(2+)(2﹣)+
    =(7+4)(7-4)+1+
    =49-48+1+
    =2+
    故选:C.
    【点睛】
    此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算.
    6、B
    【解析】
    试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.
    ∵全班有x名同学,
    ∴每名同学要送出(x-1)张;
    又∵是互送照片,
    ∴总共送的张数应该是x(x-1)=1.
    故选B
    考点:由实际问题抽象出一元二次方程.
    7、B
    【解析】
    解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×()2=9π,圆锥的侧面积=×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选B.
    点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了三视图.
    8、B
    【解析】
    【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.
    【详解】科普类图书平均每本的价格是x元,则可列方程为:
    ﹣=100,
    故选B.
    【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
    9、C
    【解析】
    分析:根据轴对称图形与中心对称图形的概念求解.
    详解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;
    B、是轴对称图形,也是中心对称图形,故此选项错误;
    C、是轴对称图形,不是中心对称图形,故此选项正确;
    D、不是轴对称图形,也不是中心对称图形,故此选项错误.
    故选:C.
    点睛:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    10、D
    【解析】
    先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.
    【详解】
    解:∵四边形ABCD是平行四边形,AE:EB=1:2,
    ∴AE:CD=1:3,
    ∵AB∥CD,
    ∴∠EAF=∠DCF,
    ∵∠DFC=∠AFE,
    ∴△AEF∽△CDF,
    ∵S△AEF=3,
    ∴==()2,
    解得S△FCD=1.
    故选D.
    【点睛】
    本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.
    11、C
    【解析】
    根据AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,进行判断即可解答.
    【详解】
    解:∵AO=2,OB=1,BC=2,
    ∴a=-2,b=1,c=3,
    ∴|a|≠|c|,ab<0,,,
    故选:C.
    【点睛】
    此题考查有理数的大小比较以及绝对值,解题的关键结合数轴求解.
    12、C
    【解析】
    分析:欲求∠B的度数,需求出同弧所对的圆周角∠C的度数;△APC中,已知了∠A及外角∠APD的度数,即可由三角形的外角性质求出∠C的度数,由此得解.
    解答:解:∵∠APD是△APC的外角,
    ∴∠APD=∠C+∠A;
    ∵∠A=30°,∠APD=70°,
    ∴∠C=∠APD-∠A=40°;
    ∴∠B=∠C=40°;
    故选C.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、﹣1
    【解析】
    连接DB,若Q点落在BD上,此时和最短,且为,设AP=x,则PD=1﹣x,PQ=x.解直角三角形得到AP=﹣1,根据三角函数的定义即可得到结论.
    【详解】
    如图:

    连接DB,若Q点落在BD上,此时和最短,且为,
    设AP=x,则PD=1﹣x,PQ=x.
    ∵∠PDQ=45°,
    ∴PD=PQ,即1﹣x=,
    ∴x=﹣1,
    ∴AP=﹣1,
    ∴tan∠ABP==﹣1,
    故答案为:﹣1.
    【点睛】
    本题考查了翻折变换(折叠问题),正方形的性质,轴对称﹣最短路线问题,正确的理解题意是解题的关键.
    14、
    【解析】
    分析:根据题意可以写出所有的可能性,然后将所有的可能性代入方程组和双曲线,找出符号要求的可能性,从而可以解答本题.
    详解:从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,则(a,b)的所有可能性是:
    (﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、
    (﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、
    (0,﹣3)、(0,﹣1)、(0,1)、(0,3)、
    (1,﹣3)、(1,﹣1)、(1,0)、(1,3)、
    (3,﹣3)、(3,﹣1)、(3,0)、(3,1),将上面所有的可能性分别代入关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是:.故答案为.
    点睛:本题考查了列表法与树状图法,解题的关键是明确题意,写出所有的可能性.
    15、x≥﹣2且x≠1
    【解析】
    分析:
    根据使分式和二次根式有意义的要求列出关于x的不等式组,解不等式组即可求得x的取值范围.
    详解:
    ∵有意义,
    ∴ ,解得:且.
    故答案为:且.
    点睛:本题解题的关键是需注意:要使函数有意义,的取值需同时满足两个条件:和,二者缺一不可.
    16、2.1.
    【解析】
    根据题意和函数图象中的数据可以求得乙车的速度和到达A地时所用的时间,从而可以解答本题.
    【详解】
    由题意可得,
    甲车到达C地用时4个小时,
    乙车的速度为:200÷(3.1﹣1)=80km/h,
    乙车到达A地用时为:(200+240)÷80+1=6.1(小时),
    当乙车到达A地时,甲车已在C地休息了:6.1﹣4=2.1(小时),
    故答案为:2.1.
    【点睛】
    本题考查了一次函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    17、2
    【解析】
    分析:根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围,再进一步根据第三边是整数求解.
    详解:根据三角形的三边关系,得
    第三边>4,而<1.
    又第三条边长为整数,
    则第三边是2.
    点睛:此题主要是考查了三角形的三边关系,同时注意整数这一条件.
    18、或
    【解析】
    分析:依据△DCM为直角三角形,需要分两种情况进行讨论:当∠CDM=90°时,△CDM是直角三角形;当∠CMD=90°时,△CDM是直角三角形,分别依据含30°角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长.
    详解:分两种情况:
    ①如图,当∠CDM=90°时,△CDM是直角三角形,

    ∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,
    ∴∠C=30°,AB=AC=+2,
    由折叠可得,∠MDN=∠A=60°,
    ∴∠BDN=30°,
    ∴BN=DN=AN,
    ∴BN=AB=,
    ∴AN=2BN=,
    ∵∠DNB=60°,
    ∴∠ANM=∠DNM=60°,
    ∴∠AMN=60°,
    ∴AN=MN=;
    ②如图,当∠CMD=90°时,△CDM是直角三角形,

    由题可得,∠CDM=60°,∠A=∠MDN=60°,
    ∴∠BDN=60°,∠BND=30°,
    ∴BD=DN=AN,BN=BD,
    又∵AB=+2,
    ∴AN=2,BN=,
    过N作NH⊥AM于H,则∠ANH=30°,
    ∴AH=AN=1,HN=,
    由折叠可得,∠AMN=∠DMN=45°,
    ∴△MNH是等腰直角三角形,
    ∴HM=HN=,
    ∴MN=,
    故答案为:或.
    点睛:本题考查了翻折变换-折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)弦AB长度的最大值为4,最小值为2;(2)面积最大值为(2500+2400)平方米,周长最大值为340米.
    【解析】
    (1)当AB是过P点的直径时,AB最长;当AB⊥OP时,AB最短,分别求出即可.(2)如图在△ABC的一侧以AC为边做等边三角形AEC,再做△AEC的外接圆,则满足∠ADC=60°的点D在优弧AEC上(点D不与A、C重合),当D与E重合时,S△ADC最大值=S△AEC,由S△ABC为定值,故此时四边形ABCD的面积最大,再根据勾股定理和等边三角形的性质求出此时的面积与周长即可.
    【详解】
    (1)(1)当AB是过P点的直径时,AB最长=2×2=4;
    当AB⊥OP时,AB最短, AP=
    ∴AB=2
    (2)如图,在△ABC的一侧以AC为边做等边三角形AEC,
    再做△AEC的外接圆,
    当D与E重合时,S△ADC最大
    故此时四边形ABCD的面积最大,
    ∵∠ABC=90°,AB=80,BC=60
    ∴AC=
    ∴周长为AB+BC+CD+AE=80+60+100+100=340(米)
    S△ADC=
    S△ABC=
    ∴四边形ABCD面积最大值为(2500+2400)平方米.

    【点睛】
    此题主要考查圆的综合利用,解题的关键是熟知圆的性质定理与垂径定理.
    20、(1)18,2,20(2)(3)当y=12时,x的值是1.2或1.6
    【解析】
    (Ⅰ)根据路程、时间、速度三者间的关系通过计算即可求得相应答案;
    (Ⅱ)根据路程=速度×时间结合甲、乙的速度以及时间范围即可求得答案;
    (Ⅲ)根据题意,得,然后分别将y=12代入即可求得答案.
    【详解】
    (Ⅰ)由题意知:甲、乙二人平均速度分别是平均速度为10km/h和40km/h,且比甲晚1.5h出发,
    当时间x=1.8 时,甲离开A的距离是10×1.8=18(km),
    当甲离开A的距离20km时,甲的行驶时间是20÷10=2(时),
    此时乙行驶的时间是2﹣1.5=0. 5(时),
    所以乙离开A的距离是40×0.5=20(km),
    故填写下表:

    (Ⅱ)由题意知:
    y1=10x(0≤x≤1.5),
    y2=;
    (Ⅲ)根据题意,得,
    当0≤x≤1.5时,由10x=12,得x=1.2,
    当1.5<x≤2时,由﹣30x+60=12,得x=1.6,
    因此,当y=12时,x的值是1.2或1.6.
    【点睛】
    本题考查了一次函数的应用,理清题意,弄清各数量间的关系是解题的关键.
    21、(1)B(2,4),反比例函数的关系式为y=;(2)①直线BD的解析式为y=-x+6;②ED=2
    【解析】
    试题分析:(1)过点A作AP⊥x轴于点P,由平行四边形的性质可得BP=4, 可得B(2,4),把点B坐标代入反比例函数解析式中即可;
    (2)①先求出直线OA的解析式,和反比例函数解析式联立,解方程组得到点D的坐标,再由待定系数法求得直线BD的解析式; ②先求得点E的坐标,过点D分别作x轴的垂线,垂足为G(4,0),由沟谷定理即可求得ED长度.
    试题解析:(1)过点A作AP⊥x轴于点P,

    则AP=1,OP=2,
    又∵AB=OC=3,
    ∴B(2,4).,
    ∵反比例函数y= (x>0)的图象经过的B,
    ∴4=,
    ∴k=8.
    ∴反比例函数的关系式为y=;
    (2)①由点A(2,1)可得直线OA的解析式为y=x.
    解方程组,得,.
    ∵点D在第一象限,
    ∴D(4,2).
    由B(2,4),点D(4,2)可得直线BD的解析式为y=-x+6;
    ②把y=0代入y=-x+6,解得x=6,
    ∴E(6,0),
    过点D分别作x轴的垂线,垂足分别为G,则G(4,0),
    由勾股定理可得:ED=.
    点睛:本题考查一次函数、反比例函数、平行四边形等几何知识,综合性较强,要求学生有较强的分析问题和解决问题的能力.
    22、(1)证明见解析;(2).
    【解析】
    (1)由切线的性质可知∠DAB=90°,由直角所对的圆周为90°可知∠ACB=90°,根据同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性质可知∠B=∠OCB,由对顶角的性质可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;
    (2)题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE•AD,故此可求得DE=,于是可求得AE=.
    【详解】
    解:(1)∵AD是圆O的切线,∴∠DAB=90°.
    ∵AB是圆O的直径,∴∠ACB=90°.
    ∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.
    ∵OC=OB,∴∠B=∠OCB.
    又∵∠DCE=∠OCB,∴∠DAC=∠DCE.
    (2)∵AB=2,∴AO=1.
    ∵sin∠D=,∴OD=3,DC=2.
    在Rt△DAO中,由勾股定理得AD==.
    ∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA,∴,即.
    解得:DE=,∴AE=AD﹣DE=.
    23、17.3米.
    【解析】
    分析:过点C作于D,根据,得到 ,在中,解三角形即可得到河的宽度.
    详解:过点C作于D,



    ∴米,
    在中,



    ∴米,
    ∴米.
    答:这条河的宽是米.
    点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.
    24、(1)抛物线的解析式为y=x3﹣3x﹣1,顶点坐标为(1,﹣4);(3)①m=;②P′A3取得最小值时,m的值是,这个最小值是.
    【解析】
    (1)根据A(﹣1,3),C(3,﹣1)在抛物线y=x3+bx+c(b,c是常数)的图象上,可以求得b、c的值;
    (3)①根据题意可以得到点P′的坐标,再根据函数解析式可以求得点B的坐标,进而求得直线BC的解析式,再根据点P′落在直线BC上,从而可以求得m的值;
    ②根据题意可以表示出P′A3,从而可以求得当P′A3取得最小值时,m的值及这个最小值.
    【详解】
    解:(1)∵抛物线y=x3+bx+c(b,c是常数)与x轴相交于A,B两点,与y轴交于点C,A(﹣1,3),C(3,﹣1),∴,解得:,∴该抛物线的解析式为y=x3﹣3x﹣1.
    ∵y=x3﹣3x﹣1=(x﹣1)3﹣4,∴抛物线的顶点坐标为(1,﹣4);
    (3)①由P(m,t)在抛物线上可得:t=m3﹣3m﹣1.
    ∵点P和P′关于原点对称,∴P′(﹣m,﹣t),当y=3时,3=x3﹣3x﹣1,解得:x1=﹣1,x3=1,由已知可得:点B(1,3).
    ∵点B(1,3),点C(3,﹣1),设直线BC对应的函数解析式为:y=kx+d,,解得:,∴直线BC的直线解析式为y=x﹣1.
    ∵点P′落在直线BC上,∴﹣t=﹣m﹣1,即t=m+1,∴m3﹣3m﹣1=m+1,解得:m=;
    ②由题意可知,点P′(﹣m,﹣t)在第一象限,∴﹣m>3,﹣t>3,∴m<3,t<3.
    ∵二次函数的最小值是﹣4,∴﹣4≤t<3.
    ∵点P(m,t)在抛物线上,∴t=m3﹣3m﹣1,∴t+1=m3﹣3m,过点P′作P′H⊥x轴,H为垂足,有H(﹣m,3).
    又∵A(﹣1,3),则P′H3=t3,AH3=(﹣m+1)3.在Rt△P′AH中,P′A3=AH3+P′H3,∴P′A3=(﹣m+1)3+t3=m3﹣3m+1+t3=t3+t+4=(t+)3+,∴当t=﹣时,P′A3有最小值,此时P′A3=,∴=m3﹣3m﹣1,解得:m=.
    ∵m<3,∴m=,即P′A3取得最小值时,m的值是,这个最小值是.

    【点睛】
    本题是二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.
    25、.
    【解析】
    (1)原式利用二次根式的性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值进行化简即可得到结果.
    【详解】
    原式,


    【点睛】
    此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
    26、证明见解析
    【解析】
    分析:根据平行四边形的性质以及已知的条件得出△EGD和△FHB全等,从而得出DG=BH,从而说明AG和CH平行且相等,得出四边形AHCG为平行四边形,从而得出答案.
    详解:证明:在▱ABCD中,,
    ,又 ,≌,
    ,,又,
    四边形AGCH为平行四边形, .
    点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型.解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG为平行四边形.
    27、(1)每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米;
    (2)共有三种调配方案.方案一: 型挖据机7台,型挖掘机5台;方案二: 型挖掘机8台,型挖掘机4台;方案三: 型挖掘机9台,型挖掘机3台.当A型挖掘机7台, 型挖掘机5台的施工费用最低,最低费用为12000元.
    【解析】
    分析:(1)根据题意列出方程组即可;
    (2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用.
    详解:(1)设每台型,型挖掘机一小时分别挖土立方米和立方米,根据题意,得

    解得
    所以,每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米.
    (2)设型挖掘机有台,总费用为元,则型挖据机有台.根据题意,得

    因为,解得,
    又因为,解得,所以.
    所以,共有三种调配方案.
    方案一:当时, ,即型挖据机7台,型挖掘机5台;
    方案二:当时, ,即型挖掘机8台,型挖掘机4台;
    方案三:当时, ,即型挖掘机9台,型挖掘机3台.
    ,由一次函数的性质可知,随的减小而减小,
    当时,,
    此时型挖掘机7台, 型挖掘机5台的施工费用最低,最低费用为12000元.
    点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题.

    相关试卷

    2024年湖北省武汉市武昌区七校联考中考模拟数学试题(原卷版+解析版): 这是一份2024年湖北省武汉市武昌区七校联考中考模拟数学试题(原卷版+解析版),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖北省武汉武昌区四校联考2023-2024学年数学九上期末联考模拟试题含答案: 这是一份湖北省武汉武昌区四校联考2023-2024学年数学九上期末联考模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2023年湖北省武汉市武昌区八校中考数学联考试卷: 这是一份2023年湖北省武汉市武昌区八校中考数学联考试卷,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map