|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖北省襄阳市樊城区太平店镇2021-2022学年中考数学模拟精编试卷含解析
    立即下载
    加入资料篮
    湖北省襄阳市樊城区太平店镇2021-2022学年中考数学模拟精编试卷含解析01
    湖北省襄阳市樊城区太平店镇2021-2022学年中考数学模拟精编试卷含解析02
    湖北省襄阳市樊城区太平店镇2021-2022学年中考数学模拟精编试卷含解析03
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省襄阳市樊城区太平店镇2021-2022学年中考数学模拟精编试卷含解析

    展开
    这是一份湖北省襄阳市樊城区太平店镇2021-2022学年中考数学模拟精编试卷含解析,共29页。试卷主要包含了已知,的负倒数是,cs30°=等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )
    A. B. C. D.
    2.如图,PB切⊙O于点B,PO交⊙O于点E,延长PO交⊙O于点A,连结AB,⊙O的半径OD⊥AB于点C,BP=6,∠P=30°,则CD的长度是(  )

    A. B. C. D.2
    3.如图,为的直径,为上两点,若,则的大小为(  ).

    A.60° B.50° C.40° D.20°
    4.如图,Rt△ABC中,∠C=90°,AC=4,BC=4,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为(  )

    A.2π B.4π C.6π D.8π
    5.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为(  )

    A.31cm B.41cm C.51cm D.61cm
    6.的负倒数是(  )
    A. B.- C.3 D.﹣3
    7.潍坊市2018年政府工作报告中显示,潍坊社会经济平稳运行,地区生产总值增长8%左右,社会消费品零售总额增长12%左右,一般公共预算收入539.1亿元,7家企业入选国家“两化”融合贯标试点,潍柴集团收入突破2000亿元,荣获中国商标金奖.其中,数字2000亿元用科学记数法表示为(  )元.(精确到百亿位)
    A.2×1011 B.2×1012 C.2.0×1011 D.2.0×1010
    8.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为(  )

    A.8 B.6 C.12 D.10
    9.若实数 a,b 满足|a|>|b|,则与实数 a,b 对应的点在数轴上的位置可以是( )
    A. B. C. D.
    10.cos30°=( )
    A. B. C. D.
    11.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )

    A.该班总人数为50 B.步行人数为30
    C.乘车人数是骑车人数的2.5倍 D.骑车人数占20%
    12.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=3 cm,则∠BAC的度数为(  )
    A.15°                             B.75°或15°                             C.105°或15°                             D.75°或105°
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在矩形ABCD中,AB=8,AD=6,点E为AB上一点,AE=2,点F在AD上,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上时,折痕EF的长为_____.

    14.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=_____.
    15.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:
    ①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC
    其中正确的是_____(填序号)

    16.抛物线y=(x﹣3)2+1的顶点坐标是____.
    17.如图,在平面直角坐标系中,正方形ABOC和正方形DOFE的顶点B,F在x轴上,顶点C,D在y轴上,且S△ADC=4,反比例函数y=(x>0)的图像经过点E, 则k=_______ 。

    18.已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线上时,若DG=2,则CE的长为_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:在这次抽样调查中,一共调查了多少名学生?请把折线统计图(图1)补充完整;
    求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;
    如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.
    20.(6分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).
    根据上述信息,解答下列各题:
    ×
    (1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;
    (2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;
    (3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).
    统计量
    平均数(次)
    中位数(次)
    众数(次)
    方差

    该班级男生





    根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.
    21.(6分)如图,已知□ABCD的面积为S,点P、Q时是▱ABCD对角线BD的三等分点,延长AQ、AP,分别交BC,CD于点E,F,连结EF。甲,乙两位同学对条件进行分析后,甲得到结论①:“E是BC中点” .乙得到结论②:“四边形QEFP的面积为S”。请判断甲乙两位同学的结论是否正确,并说明理由.

    22.(8分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.

    23.(8分)如图,在等腰△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D且BD=2AD,过点D作DE⊥AC交BA延长线于点E,垂足为点F.
    (1)求tan∠ADF的值;
    (2)证明:DE是⊙O的切线;
    (3)若⊙O的半径R=5,求EF的长.

    24.(10分)如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AE=ED,DF=DC,连结EF并延长交BC的延长线于点G,连结BE.求证:△ABE∽△DEF.若正方形的边长为4,求BG的长.

    25.(10分)已知抛物线经过点,.把抛物线与线段围成的封闭图形记作.
    (1)求此抛物线的解析式;
    (2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点.当为等腰直角三角形时,求的值;
    (3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围.

    26.(12分)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)
    若△CEF与△ABC相似.
    ①当AC=BC=2时,AD的长为   ;
    ②当AC=3,BC=4时,AD的长为   ;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.
    27.(12分)丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.
    ①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):

    ②A、B两班学生测试成绩在80≤x<90这一组的数据如下:
    A班:80 80 82 83 85 85 86 87 87 87 88 89 89
    B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89
    ③A、B两班学生测试成绩的平均数、中位数、方差如下:

    平均数
    中位数
    方差
    A班
    80.6
    m
    96.9
    B班
    80.8
    n
    153.3
    根据以上信息,回答下列问题:补全数学成绩频数分布直方图;写出表中m、n的值;请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析).



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    直接根据“上加下减,左加右减”的原则进行解答即可.
    【详解】
    将抛物线向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为,故答案选A.
    2、C
    【解析】
    连接OB,根据切线的性质与三角函数得到∠POB=60°,OB=OD=2,再根据等腰三角形的性质与三角函数得到OC的长,即可得到CD的长.
    【详解】
    解:如图,连接OB,

    ∵PB切⊙O于点B,
    ∴∠OBP=90°,
    ∵BP=6,∠P=30°,
    ∴∠POB=60°,OD=OB=BPtan30°=6×=2,
    ∵OA=OB,
    ∴∠OAB=∠OBA=30°,
    ∵OD⊥AB,
    ∴∠OCB=90°,
    ∴∠OBC=30°,
    则OC=OB=,
    ∴CD=.
    故选:C.
    【点睛】
    本题主要考查切线的性质与锐角的三角函数,解此题的关键在于利用切线的性质得到相关线段与角度的值,再根据圆和等腰三角形的性质求解即可.
    3、B
    【解析】
    根据题意连接AD,再根据同弧的圆周角相等,即可计算的的大小.
    【详解】
    解:连接,

    ∵为的直径,
    ∴.
    ∵,
    ∴,
    ∴.
    故选:B.
    【点睛】
    本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.
    4、B
    【解析】
    先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由∠A+∠B=90°可知阴影部分的面积等于一个圆的面积的.
    【详解】
    在△ABC中,依据勾股定理可知AB==8,
    ∵两等圆⊙A,⊙B外切,
    ∴两圆的半径均为4,
    ∵∠A+∠B=90°,
    ∴阴影部分的面积==4π.
    故选:B.
    【点睛】
    本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键.
    5、C
    【解析】
    ∵DG是AB边的垂直平分线,
    ∴GA=GB,
    △AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,
    ∴△ABC的周长=AC+BC+AB=51cm,
    故选C.
    6、D
    【解析】
    根据倒数的定义,互为倒数的两数乘积为1,2×=1.再求出2的相反数即可解答.
    【详解】
    根据倒数的定义得:2×=1.
    因此的负倒数是-2.
    故选D.
    【点睛】
    本题考查了倒数,解题的关键是掌握倒数的概念.
    7、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    2000亿元=2.0×1.
    故选:C.
    【点睛】
    考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    8、C
    【解析】
    由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.
    【详解】
    ∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,
    ∴PA=PB=6,AC=EC,BD=ED,
    ∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,
    即△PCD的周长为12,
    故选:C.
    【点睛】
    本题主要考查切线的性质,利用切线长定理求得PA=PB、AC=CE和BD=ED是解题的关键.
    9、D
    【解析】
    根据绝对值的意义即可解答.
    【详解】
    由|a|>|b|,得a与原点的距离比b与原点的距离远, 只有选项D符合,故选D.
    【点睛】
    本题考查了实数与数轴,熟练运用绝对值的意义是解题关键.
    10、C
    【解析】
    直接根据特殊角的锐角三角函数值求解即可.
    【详解】

    故选C.
    【点睛】
    考点:特殊角的锐角三角函数
    点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.
    11、B
    【解析】
    根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.
    【详解】
    A、总人数是:25÷50%=50(人),故A正确;
    B、步行的人数是:50×30%=15(人),故B错误;
    C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;
    D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.
    由于该题选择错误的,
    故选B.
    【点睛】
    本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    12、C
    【解析】
    解:如图1.∵AD为直径,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=3,∠CAD=45°,则∠BAC=105°;
    如图2,.∵AD为直径,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=3,∠CAD=45°,则∠BAC=15°.故选C.

    点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、4或4.
    【解析】
    ①当AF<AD时,由折叠的性质得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,过E作EH⊥MN于H,由矩形的性质得到MH=AE=2,根据勾股定理得到A′H=,根据勾股定理列方程即可得到结论;②当AF>AD时,由折叠的性质得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,过A′作HG∥BC交AB于G,交CD于H,根据矩形的性质得到DH=AG,HG=AD=6,根据勾股定理即可得到结论.
    【详解】
    ①当AF<AD时,如图1,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,

    则A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,
    设MN是BC的垂直平分线,
    则AM=AD=3,
    过E作EH⊥MN于H,
    则四边形AEHM是矩形,
    ∴MH=AE=2,
    ∵A′H=,
    ∴A′M=,
    ∵MF2+A′M2=A′F2,
    ∴(3-AF)2+()2=AF2,
    ∴AF=2,
    ∴EF==4;
    ②当AF>AD时,如图2,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,

    则A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,
    设MN是BC的垂直平分线,
    过A′作HG∥BC交AB于G,交CD于H,
    则四边形AGHD是矩形,
    ∴DH=AG,HG=AD=6,
    ∴A′H=A′G=HG=3,
    ∴EG==,
    ∴DH=AG=AE+EG=3,
    ∴A′F==6,
    ∴EF==4,
    综上所述,折痕EF的长为4或4,
    故答案为:4或4.
    【点睛】
    本题考查了翻折变换-折叠问题,矩形的性质和判定,勾股定理,正确的作出辅助线是解题的关键.
    14、1
    【解析】
    根据白球的概率公式=列出方程求解即可.
    【详解】
    不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,
    根据古典型概率公式知:P(白球)==.
    解得:n=1,
    故答案为1.
    【点睛】
    此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    15、①②④
    【解析】
    由正方形的性质和相似三角形的判定与性质,即可得出结论.
    【详解】
    ∵△BPC是等边三角形,
    ∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,
    在正方形ABCD中,
    ∵AB=BC=CD,∠A=∠ADC=∠BCD=90°
    ∴∠ABE=∠DCF=30°,
    ∴BE=2AE;故①正确;
    ∵PC=CD,∠PCD=30°,
    ∴∠PDC=75°,
    ∴∠FDP=15°,
    ∵∠DBA=45°,
    ∴∠PBD=15°,
    ∴∠FDP=∠PBD,
    ∵∠DFP=∠BPC=60°,
    ∴△DFP∽△BPH;故②正确;
    ∵∠FDP=∠PBD=15°,∠ADB=45°,
    ∴∠PDB=30°,而∠DFP=60°,
    ∴∠PFD≠∠PDB,
    ∴△PFD与△PDB不会相似;故③错误;
    ∵∠PDH=∠PCD=30°,∠DPH=∠DPC,
    ∴△DPH∽△CPD,
    ∴,
    ∴DP2=PH•PC,故④正确;
    故答案是:①②④.
    【点睛】
    本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.
    16、 (3,1)
    【解析】
    分析:已知抛物线解析式为顶点式,可直接写出顶点坐标.
    详解:∵y=(x﹣3)2+1为抛物线的顶点式,根据顶点式的坐标特点可知,抛物线的顶点坐标为(3,1).故答案为(3,1).
    点睛:主要考查了抛物线顶点式的运用.
    17、8
    【解析】
    设正方形ABOC和正方形DOFE的边长分别是m、n,则AB=OB=m,DE=EF=OF=n,BF=OB+OF=m+n,然后根据S△ADF=S梯形ABOD+S△DOF-S△ABF=4,得到关于n的方程,解方程求得n的值,最后根据系数k的几何意义求得即可.
    【详解】
    设正方形ABOC和正方形DOFE的边长分别是m、n,则AB=OB=m,DE=EF=OF=n,
    ∴BF=OB+OF=m+n,

    ∴=8,
    ∵点E(n.n)在反比例函数y=kx(x>0)的图象上,
    ∴k==8,
    故答案为8.
    【点睛】
    本题考查了正方形的性质和反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
    18、2或2.
    【解析】
    本题有两种情况,一种是点在线段的延长线上,一种是点在线段上,解题过程一样,利用正方形和三角形的有关性质,求出、的值,再由勾股定理求出的值,根据证明,可得,即可得到的长.
    【详解】
    解:

    当点在线段的延长线上时,如图3所示.
    过点作于,
    是正方形的对角线,
    ,

    ,
    在中,由勾股定理,得:
    ,
    在和中,,
    ,



    当点在线段上时,如图4所示.
    过作于.
    是正方形的对角线,




    在中,由勾股定理,得:

    在和中,,
    ,



    故答案为或.
    【点睛】
    本题主要考查了勾股定理和三角形全等的证明.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)一共调查了300名学生.
    (2)

    (3)体育部分所对应的圆心角的度数为48°.
    (4)1800名学生中估计最喜爱科普类书籍的学生人数为1.
    【解析】
    (1)用文学的人数除以所占的百分比计算即可得解.
    (2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可.
    (3)用体育所占的百分比乘以360°,计算即可得解.
    (4)用总人数乘以科普所占的百分比,计算即可得解.
    【详解】
    解:(1)∵90÷30%=300(名),
    ∴一共调查了300名学生.
    (2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名.
    补全折线图如下:

    (3)体育部分所对应的圆心角的度数为:×360°=48°.
    (4)∵1800×=1(名),
    ∴1800名学生中估计最喜爱科普类书籍的学生人数为1.
    20、(1)20,1;(2)2人;(1)男生比女生的波动幅度大.
    【解析】
    (1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.
    (2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.
    (1)比较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差.
    【详解】
    (1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是1.
    故答案为20,1.
    (2)由题意:该班女生对“两会”新闻的“关注指数”为=65%,所以,男生对“两会”新闻的“关注指数”为60%.设该班的男生有x人,则=60%,解得:x=2.
    答:该班级男生有2人.
    (1)该班级女生收看“两会”新闻次数的平均数为=1,女生收看“两会”新闻次数的方差为:=.
    ∵2>,∴男生比女生的波动幅度大.
    【点睛】
    本题考查了平均数,中位数,方差的意义.解题的关键是明确平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
    21、①结论一正确,理由见解析;②结论二正确,S四QEFP= S
    【解析】
    试题分析:
    (1)由已知条件易得△BEQ∽△DAQ,结合点Q是BD的三等分点可得BE:AD=BQ:DQ=1:2,再结合AD=BC即可得到BE:BC=1:2,从而可得点E是BC的中点,由此即可说明甲同学的结论①成立;
    (2)同(1)易证点F是CD的中点,由此可得EF∥BD,EF=BD,从而可得△CEF∽△CBD,则可得得到S△CEF=S△CBD=S平行四边形ABCD=S,结合S四边形AECF=S可得S△AEF=S,由QP=BD,EF=BD可得QP:EF=2:3,结合△AQP∽△AEF可得S△AQP=S△AEF=,由此可得S四边形QEFP= S△AEF- S△AQP=S,从而说明乙的结论②正确;
    试题解析:
    甲和乙的结论都成立,理由如下:
    (1)∵在平行四边形ABCD中,AD∥BC,
    ∴△BEQ∽△DAQ,
    又∵点P、Q是线段BD的三等分点,
    ∴BE:AD=BQ:DQ=1:2,
    ∵AD=BC,
    ∴BE:BC=1:2,
    ∴点E是BC的中点,即结论①正确;
    (2)和(1)同理可得点F是CD的中点,
    ∴EF∥BD,EF=BD,
    ∴△CEF∽△CBD,
    ∴S△CEF=S△CBD=S平行四边形ABCD=S,
    ∵S四边形AECF=S△ACE+S△ACF=S平行四边形ABCD=S,
    ∴S△AEF=S四边形AECF-S△CEF=S,
    ∵EF∥BD,
    ∴△AQP∽△AEF,
    又∵EF=BD,PQ=BD,
    ∴QP:EF=2:3,
    ∴S△AQP=S△AEF=,
    ∴S四边形QEFP= S△AEF- S△AQP=S-=S,即结论②正确.
    综上所述,甲、乙两位同学的结论都正确.
    22、木竿PQ的长度为3.35米.
    【解析】
    过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质 得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.
    试题解析:
    【详解】
    解:过N点作ND⊥PQ于D,

    则四边形DPMN为矩形,
    ∴DN=PM=1.8m,DP=MN=1.1m,
    ∴,
    ∴QD==2.25,
    ∴PQ=QD+DP= 2.25+1.1=3.35(m).
    答:木竿PQ的长度为3.35米.
    【点睛】
    本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.
    23、(1);(2)见解析;(3)
    【解析】
    (1) AB是⊙O的直径,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;
    (2)连接OD,由已知条件证明AC∥OD,又DE⊥AC,可得DE是⊙O的切线;
    (3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的长.
    【详解】
    解:(1)∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∵AB=AC,
    ∴∠BAD=∠CAD,
    ∵DE⊥AC,
    ∴∠AFD=90°,
    ∴∠ADF=∠B,
    ∴tan∠ADF=tan∠B==;
    (2)连接OD,
    ∵OD=OA,
    ∴∠ODA=∠OAD,
    ∵∠OAD=∠CAD,
    ∴∠CAD=∠ODA,
    ∴AC∥OD,
    ∵DE⊥AC,
    ∴OD⊥DE,
    ∴DE是⊙O的切线;
    (3)设AD=x,则BD=2x,
    ∴AB=x=10,
    ∴x=2,
    ∴AD=2,
    同理得:AF=2,DF=4,
    ∵AF∥OD,
    ∴△AFE∽△ODE,
    ∴,
    ∴=,
    ∴EF=.
    【点睛】
    本题考查切线的证明及圆与三角形相似的综合,为中考常考题型,需引起重视.
    24、(1)见解析;(2)BG=BC+CG=1.
    【解析】
    (1)利用正方形的性质,可得∠A=∠D,根据已知可得AE:AB=DF:DE,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;
    (2)根据相似三角形的预备定理得到△EDF∽△GCF,再根据相似的性质即可求得CG的长,那么BG的长也就不难得到.
    【详解】
    (1)证明:∵ABCD为正方形,
    ∴AD=AB=DC=BC,∠A=∠D=90 °.
    ∵AE=ED,
    ∴AE:AB=1:2.
    ∵DF=DC,
    ∴DF:DE=1:2,
    ∴AE:AB=DF:DE,
    ∴△ABE∽△DEF;
    (2)解:∵ABCD为正方形,
    ∴ED∥BG,
    ∴△EDF∽△GCF,
    ∴ED:CG=DF:CF.
    又∵DF=DC,正方形的边长为4,
    ∴ED=2,CG=6,
    ∴BG=BC+CG=1.
    【点睛】
    本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.
    25、(1);(2)-2或-1;(3)-1≤n<1或1 【解析】
    (1)把点,代入抛物线得关于a,b的二元一次方程组,解出这个方程组即可;
    (2)根据题意画出图形,分三种情况进行讨论;
    (3)作出图形,把其中一点恰好在抛物线上时算出,再确定其取值范围.
    【详解】
    解:(1)依题意,得:

    解得:
    ∴此抛物线的解析式 ;
    (2)设直线AB的解析式为y=kx+b,依题意得:

    解得:
    ∴直线AB的解析式为y=-x.
    ∵点P的横坐标为m,且在抛物线上,
    ∴点P的坐标为(m, )
    ∵轴,且点Q有线段AB上,
    ∴点Q的坐标为(m,-m)
    ① 当PQ=AP时,如图,∵∠APQ=90°,轴,

    解得,m=-2或m=1(舍去)

    ② 当AQ=AP时,如图,过点A作AC⊥PQ于C,

    ∵为等腰直角三角形,
    ∴2AC=PQ

    即m=1(舍去)或m=-1.
    综上所述,当为等腰直角三角形时,求的值是-2惑-1.;
    (3)①如图,当n<1时,依题意可知C,D的横坐标相同,CE=2(1-n)
    ∴点E的坐标为(n,n-2)
    当点E恰好在抛物线上时,解得,n=-1.
    ∴此时n的取值范围-1≤n<1.

    ②如图,当n>1时,依题可知点E的坐标为(2-n,-n)
    当点E在抛物线上时,
    解得,n=3或n=1.
    ∵n>1.
    ∴n=3.
    ∴此时n的取值范围1 综上所述,n的取值范围为-1≤n<1或1
    【点睛】
    本题主要考查了二次函数与几何图形的综合应用,掌握相关几何图形的性质和二次函数的性质是解题的关键.
    26、解:(1)①.②或.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.
    【解析】
    (1)①当AC=BC=2时,△ABC为等腰直角三角形;
    ②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;
    (2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.
    【详解】
    (1)若△CEF与△ABC相似.
    ①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,

    此时D为AB边中点,AD=AC=.
    ②当AC=3,BC=4时,有两种情况:
    (I)若CE:CF=3:4,如答图2所示,

    ∵CE:CF=AC:BC,∴EF∥BC.
    由折叠性质可知,CD⊥EF,
    ∴CD⊥AB,即此时CD为AB边上的高.
    在Rt△ABC中,AC=3,BC=4,∴BC=1.
    ∴cosA=.∴AD=AC•cosA=3×=.
    (II)若CF:CE=3:4,如答图3所示.
    ∵△CEF∽△CAB,∴∠CEF=∠B.
    由折叠性质可知,∠CEF+∠ECD=90°.
    又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.
    同理可得:∠B=∠FCD,CD=BD.∴AD=BD.
    ∴此时AD=AB=×1=.
    综上所述,当AC=3,BC=4时,AD的长为或.
    (2)当点D是AB的中点时,△CEF与△CBA相似.理由如下:
    如图所示,连接CD,与EF交于点Q.
    ∵CD是Rt△ABC的中线
    ∴CD=DB=AB,
    ∴∠DCB=∠B.
    由折叠性质可知,∠CQF=∠DQF=90°,
    ∴∠DCB+∠CFE=90°,
    ∵∠B+∠A=90°,
    ∴∠CFE=∠A,
    又∵∠ACB=∠ACB,
    ∴△CEF∽△CBA.
    27、(1)见解析;(2)m=81,n=85;(3)略.
    【解析】
    (1)先求出B班人数,根据两班人数相同可求出A班70≤x<80组的人数,补全统计图即可;
    (2)根据中位数的定义求解即可;
    (3)可以从中位数和方差的角度分析,合理即可.
    【详解】
    解:(1)A、B两班学生人数=5+2+3+22+8=40人,
    A班70≤x<80组的人数=40-1-7-13-9=10人,
    A、B两班学生数学成绩频数分布直方图如下:

    (2)根据中位数的定义可得:m==81,n==85;
    (3)从中位数的角度看,B班学生的数学成绩比A班学生的数学成绩好;
    从方差的角度看,A班学生的数学成绩比B班学生的数学成绩稳定.
    【点睛】
    本题考查了条形统计图、求中位数以及利用平均数、中位数、方差作决策等知识,能够从统计图中获取有用信息是解题关键.

    相关试卷

    2023-2024学年湖北省襄阳市樊城区太平店镇数学九上期末质量检测试题含答案: 这是一份2023-2024学年湖北省襄阳市樊城区太平店镇数学九上期末质量检测试题含答案,共7页。试卷主要包含了对于二次函数y=2等内容,欢迎下载使用。

    湖北省襄阳市樊城区太平店镇2022-2023学年七下数学期末教学质量检测试题含答案: 这是一份湖北省襄阳市樊城区太平店镇2022-2023学年七下数学期末教学质量检测试题含答案,共6页。试卷主要包含了下列事件等内容,欢迎下载使用。

    湖北省襄阳市樊城区太平店镇2021-2022学年十校联考最后数学试题含解析: 这是一份湖北省襄阳市樊城区太平店镇2021-2022学年十校联考最后数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,是两个连续整数,若,则分别是.等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map