湖北省宜昌市五峰县达标名校2021-2022学年中考数学最后一模试卷含解析
展开
这是一份湖北省宜昌市五峰县达标名校2021-2022学年中考数学最后一模试卷含解析,共18页。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如果(,均为非零向量),那么下列结论错误的是( )
A.// B.-2=0 C.= D.
2.下列计算正确的是( )
A.(a)=a B.a+a=a
C.(3a)•(2a)=6a D.3a﹣a=3
3.下列二次根式中,是最简二次根式的是( )
A. B. C. D.
4.二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为( )
A. B. C. D.
5.若二次函数y=-x2+bx+c与x轴有两个交点(m,0),(m-6,0),该函数图像向下平移n个单位长度时与x轴有且只有一个交点,则n的值是( )
A.3 B.6 C.9 D.36
6.在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是( )
A.y1 B.y2 C.y3 D.y4
7.已知一元二次方程ax2+ax﹣4=0有一个根是﹣2,则a值是( )
A.﹣2 B. C.2 D.4
8.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为( )
A. B.2 C. D.
9.关于的不等式的解集如图所示,则的取值是
A.0 B. C. D.
10.如图的几何体中,主视图是中心对称图形的是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x2﹣2x+1=﹣x2+5x﹣3:则所捂住的多项式是___.
12.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为___.
13.若关于的不等式组无解, 则的取值范围是 ________.
14.按照一定规律排列依次为,…..按此规律,这列数中的第100个数是_____.
15.2018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区.据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有________万人.
16.已知m、n是一元二次方程x2+4x﹣1=0的两实数根,则=_____.
三、解答题(共8题,共72分)
17.(8分)如图,在顶点为P的抛物线y=a(x-h)2+k(a≠0)的对称轴1的直线上取点A(h,k+),过A作BC⊥l交抛物线于B、C两点(B在C的左侧),点和点A关于点P对称,过A作直线m⊥l.又分别过点B,C作直线BE⊥m和CD⊥m,垂足为E,D.在这里,我们把点A叫此抛物线的焦点,BC叫此抛物线的直径,矩形BCDE叫此抛物线的焦点矩形.
(1)直接写出抛物线y=x2的焦点坐标以及直径的长.
(2)求抛物线y=x2-x+的焦点坐标以及直径的长.
(3)已知抛物线y=a(x-h)2+k(a≠0)的直径为,求a的值.
(4)①已知抛物线y=a(x-h)2+k(a≠0)的焦点矩形的面积为2,求a的值.
②直接写出抛物线y=x2-x+的焦点短形与抛物线y=x2-2mx+m2+1公共点个数分别是1个以及2个时m的值.
18.(8分)某中学为了考察九年级学生的中考体育测试成绩(满分30分),随机抽查了40名学生的成绩(单位:分),得到如下的统计图①和图②.请根据相关信息,解答下列问题:
(1)图中m的值为_______________.
(2)求这40个样本数据的平均数、众数和中位数:
(3)根据样本数据,估计该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生。
19.(8分)计算:sin30°•tan60°+..
20.(8分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
21.(8分)某花卉基地种植了郁金香和玫瑰两种花卉共 30 亩,有关数据如表:
成本
(单位:万元/亩)
销售额
(单位:万元/亩)
郁金香
2.4
3
玫瑰
2
2.5
(1)设种植郁金香 x 亩,两种花卉总收益为 y 万元,求 y 关于 x 的函数关系式.(收益=销售额﹣成本)
(2) 若计划投入的成本的总额不超过 70 万元,要使获得的收益最大,基地应种植郁金香和玫瑰个多少亩?
22.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.
(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;
(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.
23.(12分)先化简,再求值:,其中x=-5
24.先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
试题解析:向量最后的差应该还是向量. 故错误.
故选B.
2、A
【解析】
根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.
【详解】
A.(a2)3=a2×3=a6,故本选项正确;
B.a2+a2=2a2,故本选项错误;
C.(3a)•(2a)2=(3a)•(4a2)=12a1+2=12a3,故本选项错误;
D.3a﹣a=2a,故本选项错误.
故选A.
【点睛】
本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.
3、B
【解析】
根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式判断即可.
【详解】
A、 =4,不符合题意;
B、是最简二次根式,符合题意;
C、=,不符合题意;
D、=,不符合题意;
故选B.
【点睛】
本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
4、D
【解析】
根据二次函数图象开口向上得到a>0,再根据对称轴确定出b,根据二次函数图形与轴的交点个数,判断的符号,根据图象发现当x=1时y=a+b+c0,
∵对称轴为直线
∴b0,
∵当x=1时y=a+b+c
相关试卷
这是一份湖北省黄冈麻城市重点达标名校2021-2022学年中考数学最后一模试卷含解析,共20页。试卷主要包含了下列说法中,错误的是等内容,欢迎下载使用。
这是一份湖北省宜昌市五峰县2021-2022学年中考数学最后一模试卷含解析,共15页。试卷主要包含了考生必须保证答题卡的整洁,若一个正比例函数的图象经过A,下列4个数等内容,欢迎下载使用。
这是一份湖北省宜昌市长阳县重点达标名校2021-2022学年中考数学模试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列几何体中三视图完全相同的是等内容,欢迎下载使用。