湖北省孝感市八校联考2022年中考数学猜题卷含解析
展开
这是一份湖北省孝感市八校联考2022年中考数学猜题卷含解析,共17页。试卷主要包含了下列分式是最简分式的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.据国家统计局2018年1月18日公布,2017年我国GDP总量为827122亿元,首次登上80万亿元的门槛,数据827122亿元用科学记数法表示为( )A.8.27122×1012 B.8.27122×1013 C.0.827122×1014 D.8.27122×10142.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是( )A.1 B.3 C.4 D.53.数轴上有A,B,C,D四个点,其中绝对值大于2的点是( )A.点A B.点B C.点C D.点D4.将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )A.B.C.D.5.某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为( )A.28×109 B.2.8×108 C.2.8×109 D.2.8×10106.以坐标原点为圆心,以2个单位为半径画⊙O,下面的点中,在⊙O上的是( )A.(1,1) B.(,) C.(1,3) D.(1,)7.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A.9分 B.8分 C.7分 D.6分8.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是( )A.a>﹣4 B.bd>0 C.|a|>|b| D.b+c>09.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为( )A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×10410.下列分式是最简分式的是( )A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____.12.分解因式:3x2-6x+3=__.13.不等式组的解集是_____;14.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________度. 15.如图,AC是以AB为直径的⊙O的弦,点D是⊙O上的一点,过点D作⊙O的切线交直线AC于点E,AD平分∠BAE,若AB=10,DE=3,则AE的长为_____.16.同学们设计了一个重复抛掷的实验:全班48人分为8个小组,每组抛掷同一型号的一枚瓶盖300次,并记录盖面朝上的次数,下表是依次累计各小组的实验结果. 1组1~2组1~3组1~4组1~5组1~6组1~7组1~8组盖面朝上次数16533548363280194911221276盖面朝上频率0.5500.5580.5370.5270.5340.5270.5340.532根据实验,你认为这一型号的瓶盖盖面朝上的概率为____,理由是:____.17.某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动,以下是根据调查结果绘制的统计图表的一部分 那么,其中最喜欢足球的学生数占被调查总人数的百分比为____________%三、解答题(共7小题,满分69分)18.(10分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)补全频数分布直方图(2)求扇形统计图中m的值和E组对应的圆心角度数(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数19.(5分)如图,在方格纸中.(1)请在方格纸上建立平面直角坐标系,使,,并求出点坐标;(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;(3)计算的面积.20.(8分)如图,在△ABC中,D为BC边上一点,AC=DC,E为AB边的中点,(1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连接EF,若BD=4,求EF的长.21.(10分)当x取哪些整数值时,不等式与4﹣7x<﹣3都成立?22.(10分)已知△ABC在平面直角坐标系中的位置如图所示.分别写出图中点A和点C的坐标;画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;求点A旋转到点A′所经过的路线长(结果保留π).23.(12分)如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58°.为了改善滑梯AB的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)24.(14分)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.求反比例函数y=的表达式;求点B的坐标;求△OAP的面积.
参考答案 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
由科学记数法的定义可得答案.【详解】解:827122亿即82712200000000,用科学记数法表示为8.27122×1013,故选B.【点睛】科学记数法表示数的标准形式为 (<10且n为整数).2、D【解析】
根据二次函数的图象与性质即可求出答案.【详解】解:①由抛物线的对称轴可知:,∴,由抛物线与轴的交点可知:,∴,∴,故①正确;②抛物线与轴只有一个交点,∴,∴,故②正确;③令,∴,∵,∴,∴,∴,∵,∴,故③正确;④由图象可知:令,即的解为,∴的根为,故④正确;⑤∵,∴,故⑤正确;故选D.【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.3、A【解析】
根据绝对值的含义和求法,判断出绝对值等于2的数是﹣2和2,据此判断出绝对值等于2的点是哪个点即可.【详解】解:∵绝对值等于2的数是﹣2和2,∴绝对值等于2的点是点A.故选A.【点睛】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.4、A【解析】
先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.
故选A.5、D【解析】
根据科学计数法的定义来表示数字,选出正确答案.【详解】解:把一个数表示成a(1≤a<10,n为整数)与10的幂相乘的形式,这种记数法叫做科学记数法,280亿用科学计数法表示为2.8×1010,所以答案选D.【点睛】本题考查学生对科学计数法的概念的掌握和将数字用科学计数法表示的能力.6、B【解析】
根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.【详解】A选项,(1,1)到坐标原点的距离为<2,因此点在圆内,B选项(,) 到坐标原点的距离为=2,因此点在圆上,C选项 (1,3) 到坐标原点的距离为>2,因此点在圆外D选项(1,) 到坐标原点的距离为<2,因此点在圆内,故选B.【点睛】本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系.7、C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为 :7分,故答案为:C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8、C【解析】
根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.【详解】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.【点睛】本题考查了有理数大小的比较、有理数的运算,绝对值的性质,熟练掌握相关的知识是解题的关键9、D【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:10700=1.07×104,
故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、C【解析】解:A.,故本选项错误;B.,故本选项错误;C.,不能约分,故本选项正确;D.,故本选项错误.故选C.点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键. 二、填空题(共7小题,每小题3分,满分21分)11、1【解析】
观察给出的数,发现个位数是循环的,然后再看2019÷4的余数,即可求解.【详解】由给出的这组数21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…,个位数字1,3,1,5循环出现,四个一组,2019÷4=504…3,∴22019﹣1的个位数是1.故答案为1.【点睛】本题考查数的循环规律,确定循环规律,找准余数是解题的关键.12、3(x-1)2【解析】
先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】.故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13、x≤1【解析】分析:分别求出不等式组中两个不等式的解集,找出解集的公共部分即可确定出不等式组的解集.详解: ,由①得:x由②得:.则不等式组的解集为:x.故答案为x≤1.点睛:本题主要考查了解一元一次不等式组.14、22.5°【解析】
四边形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OB═OC,∠OAD=∠ODA,∠OAB=∠OBA,∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∠EAO=∠AOE,AE⊥BD,∠AEO=90°,∠AOE=45°,∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.15、1或9【解析】(1)点E在AC的延长线上时,过点O作OFAC交AC于点F,如图所示∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAE,∴∠OAD=∠ODA=∠DAC,∴OD//AE,∵DE是圆的切线,∴DE⊥OD,∴∠ODE=∠E=90o,∴四边形ODEF是矩形,∴OF=DE,EF=OD=5,又∵OF⊥AC,∴AF=,∴AE=AF+EF=5+4=9.(2)当点E在CA的线上时,过点O作OFAC交AC于点F,如图所示同(1)可得:EF=OD=5,OF=DE=3,在直角三角形AOF中,AF=,∴AE=EF-AF=5-4=1.16、0.532, 在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值. 【解析】
根据用频率估计概率解答即可.【详解】∵在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值,∴这一型号的瓶盖盖面朝上的概率为0.532,故答案为:0.532,在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.【点睛】本题考查了利用频率估计概率的知识,解答此题关键是用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.17、1%【解析】
依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比.【详解】∵被调查学生的总数为10÷20%=50人,
∴最喜欢篮球的有50×32%=16人,
则最喜欢足球的学生数占被调查总人数的百分比=×100%=1%,
故答案为:1.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系. 三、解答题(共7小题,满分69分)18、略;m=40, 1.4°;870人.【解析】试题分析:根据A组的人数和比例得出总人数,然后得出D组的人数,补全条形统计图;根据C组的人数和总人数得出m的值,根据E组的人数求出E的百分比,然后计算圆心角的度数;根据D组合E组的百分数总和,估算出该校的每周的课外阅读时间不小于6小时的人数.试题解析:(1)补全频数分布直方图,如图所示.(2)∵10÷10%=100 ∴40÷100=40% ∴m=40∵4÷100=4% ∴“E”组对应的圆心角度数=4%×360°=1.4°(3)3000×(25%+4%)=870(人).答:估计该校学生中每周的课外阅读时间不小于6小时的人数是870人.考点:统计图.19、(1)作图见解析;.(2)作图见解析;(3)1.【解析】分析:(1)直接利用A,C点坐标得出原点位置进而得出答案;(2)利用位似图形的性质即可得出△A'B'C';(3)直接利用(2)中图形求出三角形面积即可.详解:(1)如图所示,即为所求的直角坐标系;B(2,1);(2)如图:△A'B'C'即为所求;(3)S△A'B'C'=×4×8=1.点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.20、 (1)见解析;(1)1【解析】
(1)根据角平分线的作图可得;
(1)由等腰三角形的三线合一,结合E为AB边的中点证EF为△ABD的中位线可得.【详解】(1)如图,射线CF即为所求;(1)∵∠CAD=∠CDA,∴AC=DC,即△CAD为等腰三角形;又CF是顶角∠ACD的平分线,∴CF是底边AD的中线,即F为AD的中点,∵E是AB的中点,∴EF为△ABD的中位线,∴EF=BD=1.【点睛】本题主要考查作图-基本作图和等腰三角形的性质、中位线定理,熟练掌握等腰三角形的性质、中位线定理是解题的关键.21、2,1【解析】
根据题意得出不等式组,解不等式组求得其解集即可.【详解】根据题意得,解不等式①,得:x≤1,解不等式②,得:x>1,则不等式组的解集为1<x≤1,∴x可取的整数值是2,1.【点睛】本题考查了解不等式组的能力,根据题意得出不等式组是解题的关键.22、(1)、(2)见解析(3)【解析】试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A所经过的路程是以点C为圆心,AC长为半径的扇形的弧长.试题解析:(1)A(0,4)C(3,1)(2)如图所示:(3)根据勾股定理可得:AC=3,则.考点:图形的旋转、扇形的弧长计算公式.23、调整后的滑梯AD比原滑梯AB增加2.5米【解析】试题分析: Rt△ABD中,根据30°的角所对的直角边是斜边的一半得到AD的长,然后在Rt△ABC中,求得AB的长后用即可求得增加的长度.试题解析: Rt△ABD中,∵AC=3米,∴AD=2AC=6(m)∵在Rt△ABC中, ∴AD−AB=6−3.53≈2.5(m).∴调整后的滑梯AD比原滑梯AB增加2.5米.24、(1)反比例函数解析式为y=;(2)点B的坐标为(9,3);(3)△OAP的面积=1.【解析】
(1)将点A的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=1,由AB∥x轴即可得点B的坐标;(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得.【详解】(1)将点A(4,3)代入y=,得:k=12,则反比例函数解析式为y=;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴OA==1,∵AB∥x轴,且AB=OA=1,∴点B的坐标为(9,3);(3)∵点B坐标为(9,3),∴OB所在直线解析式为y=x,由可得点P坐标为(6,2),(负值舍去),过点P作PD⊥x轴,延长DP交AB于点E,则点E坐标为(6,3),∴AE=2、PE=1、PD=2,则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=1.【点睛】本题考查了反比例函数与几何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.
相关试卷
这是一份湖北省武汉新洲区五校联考2022年中考数学猜题卷含解析,共16页。试卷主要包含了答题时请按要求用笔,不等式组的正整数解的个数是,下列运算正确的是等内容,欢迎下载使用。
这是一份2022年湖北省麻城思源校中考猜题数学试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,一元二次方程的根是,一个正比例函数的图象过点等内容,欢迎下载使用。
这是一份2022届湖北省天门天宜国际校中考数学猜题卷含解析,共20页。试卷主要包含了下列计算正确的是,若点P等内容,欢迎下载使用。