终身会员
搜索
    上传资料 赚现金
    湖北宣恩椒园达标名校2021-2022学年中考数学最后冲刺模拟试卷含解析
    立即下载
    加入资料篮
    湖北宣恩椒园达标名校2021-2022学年中考数学最后冲刺模拟试卷含解析01
    湖北宣恩椒园达标名校2021-2022学年中考数学最后冲刺模拟试卷含解析02
    湖北宣恩椒园达标名校2021-2022学年中考数学最后冲刺模拟试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北宣恩椒园达标名校2021-2022学年中考数学最后冲刺模拟试卷含解析

    展开
    这是一份湖北宣恩椒园达标名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共24页。试卷主要包含了若△÷,则“△”可能是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是(  )

    A.SAS B.SSS C.AAS D.ASA
    2.如图,在平面直角坐标系中,△ABC与△A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为(  )

    A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)
    3.如图,在平面直角坐标系中,正方形的顶点在轴上,且,,则正方形的面积是( )

    A. B. C. D.
    4.如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为( )。

    A.70° B.65° C.50° D.25°
    5.如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过的图形面积为(  )

    A. B. C.6π D.以上答案都不对
    6.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是  

    A. B. C. D.
    7.若△÷,则“△”可能是(  )
    A. B. C. D.
    8.某校九年级(1)班全体学生实验考试的成绩统计如下表:
    成绩(分)
    24
    25
    26
    27
    28
    29
    30
    人数(人)
    2
    5
    6
    6
    8
    7
    6
    根据上表中的信息判断,下列结论中错误的是(  )
    A.该班一共有40名同学
    B.该班考试成绩的众数是28分
    C.该班考试成绩的中位数是28分
    D.该班考试成绩的平均数是28分
    9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )

    A.4个 B.3个 C.2个 D.1个
    10.下列美丽的图案中,不是轴对称图形的是(   )
    A. B. C. D.
    11.如图,已知AB∥CD,AD=CD,∠1=40°,则∠2的度数为(  )

    A.60° B.65° C.70° D.75°
    12.下列四个实数中是无理数的是( )
    A.2.5 B. C.π D.1.414
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,Rt△ABC中,∠ACB=90°,D为AB的中点,F为CD上一点,且CF=CD,过点B作BE∥DC交AF的延长线于点E,BE=12,则AB的长为_____.

    14.如图所示,三角形ABC的面积为1cm1.AP垂直∠B的平分线BP于P.则与三角形PBC的面积相等的长方形是( )

    A.
    B.
    C.
    D.
    15.将代入函数中,所得函数值记为,又将代入函数中,所得的函数值记为,再将代入函数中,所得函数值记为…,继续下去.________;________;________;________.
    16.在直角坐标系中,坐标轴上到点P(﹣3,﹣4)的距离等于5的点的坐标是  .
    17.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_____.
    18.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,则x的取值范围是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.

    根据以上信息解决下列问题: , ;扇形统计图中机器人项目所对应扇形的圆心角度数为 °;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.
    20.(6分)已知反比例函数的图象过点A(3,2).
    (1)试求该反比例函数的表达式;
    (2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.

    21.(6分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.

    (1)填空:∠AHC   ∠ACG;(填“>”或“<”或“=”)
    (2)线段AC,AG,AH什么关系?请说明理由;
    (3)设AE=m,
    ①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
    ②请直接写出使△CGH是等腰三角形的m值.
    22.(8分)如图,在Rt△ABC中,∠ACB=90°,CD 是斜边AB上的高
    (1)△ACD与△ABC相似吗?为什么?
    (2)AC2=AB•AD 成立吗?为什么?

    23.(8分)如图,在平面直角坐标系中,已知OA=6厘米,OB=8厘米.点P从点B开始沿BA边向终点A以1厘米/秒的速度移动;点Q从点A开始沿AO边向终点O以1厘米/秒的速度移动.若P、Q同时出发运动时间为t(s).
    (1)t为何值时,△APQ与△AOB相似?
    (2)当 t为何值时,△APQ的面积为8cm2?

    24.(10分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E
    求证:△ACD≌△AED;若∠B=30°,CD=1,求BD的长.
    25.(10分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数的图象上,过点A的直线y=x+b交x轴于点B.求k和b的值;求△OAB的面积.

    26.(12分)如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).画出△ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1(   ,   ),B1(   ,   ),C1(   ,   );画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,并直接写出△CC1C2的面积是   .

    27.(12分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.
    收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:
    排球
    10
    9.5
    9.5
    10
    8
    9
    9.5
    9

    7
    10
    4
    5.5
    10
    9.5
    9.5
    10
    篮球
    9.5
    9
    8.5
    8.5
    10
    9.5
    10
    8

    6
    9.5
    10
    9.5
    9
    8.5
    9.5
    6
    整理、描述数据:按如下分数段整理、描述这两组样本数据:
    (说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)
    分析数据:两组样本数据的平均数、中位数、众数如下表所示:
    项目
    平均数
    中位数
    众数
    排球
    8.75
    9.5
    10
    篮球
    8.81
    9.25
    9.5
    得出结论:
    (1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;
    (2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.
    你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.
    【详解】
    由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',
    故选:B.
    【点睛】
    本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理.
    2、A
    【解析】
    延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标.
    【详解】
    如图,点P的坐标为(-4,-3).

    故选A.
    【点睛】
    本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
    3、D
    【解析】

    作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),
    ∴OD=AE=5,
    ,
    ∴正方形的面积是: ,故选D.
    4、C
    【解析】
    首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.
    【详解】
    解:∵AD∥BC,
    ∴∠EFB=∠FED=65°,
    由折叠的性质知,∠DEF=∠FED′=65°,
    ∴∠AED′=180°-2∠FED=50°,
    故选:C.
    【点睛】
    此题考查了长方形的性质与折叠的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
    5、D
    【解析】
    从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积.
    【详解】
    阴影面积=π.
    故选D.
    【点睛】
    本题的关键是理解出,线段AB扫过的图形面积为一个环形.
    6、B
    【解析】
    根据常见几何体的展开图即可得.
    【详解】
    由展开图可知第一个图形是②正方体的展开图,
    第2个图形是①圆柱体的展开图,
    第3个图形是③三棱柱的展开图,
    第4个图形是④四棱锥的展开图,
    故选B
    【点睛】
    本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.
    7、A
    【解析】
    直接利用分式的乘除运算法则计算得出答案.
    【详解】


    故选:A.
    【点睛】
    考查了分式的乘除运算,正确分解因式再化简是解题关键.
    8、D
    【解析】
    直接利用众数、中位数、平均数的求法分别分析得出答案.
    【详解】
    解:A、该班一共有2+5+6+6+8+7+6=40名同学,故此选项正确,不合题意;
    B、该班考试成绩的众数是28分,此选项正确,不合题意;
    C、该班考试成绩的中位数是:第20和21个数据的平均数,为28分,此选项正确,不合题
    意;
    D、该班考试成绩的平均数是:(24×2+25×5+26×6+27×6+28×8+29×7+30×6)÷40=27.45(分),
    故选项D错误,符合题意.
    故选D.
    【点睛】
    此题主要考查了众数、中位数、平均数的求法,正确把握相关定义是解题关键.
    9、B
    【解析】
    解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;
    ∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;
    ∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;
    ∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;
    ∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.
    故选:B.
    【点睛】
    本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
    10、A
    【解析】
    根据轴对称图形的概念对各选项分析判断即可得解.
    【详解】
    解:A、不是轴对称图形,故本选项正确;
    B、是轴对称图形,故本选项错误;
    C、是轴对称图形,故本选项错误;
    D、是轴对称图形,故本选项错误.
    故选A.
    【点睛】
    本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    11、C
    【解析】
    由等腰三角形的性质可求∠ACD=70°,由平行线的性质可求解.
    【详解】
    ∵AD=CD,∠1=40°,
    ∴∠ACD=70°,
    ∵AB∥CD,
    ∴∠2=∠ACD=70°,
    故选:C.
    【点睛】
    本题考查了等腰三角形的性质,平行线的性质,是基础题.
    12、C
    【解析】
    本题主要考查了无理数的定义.根据无理数的定义:无限不循环小数是无理数即可求解.
    解:A、2.5是有理数,故选项错误;
    B、是有理数,故选项错误;
    C、π是无理数,故选项正确;
    D、1.414是有理数,故选项错误.
    故选C.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1.
    【解析】
    根据三角形的性质求解即可。
    【详解】
    解:在Rt△ABC中, D为AB的中点, 根据直角三角形斜边的中线等于斜边的一半可得:AD=BD=CD,
    因为D为AB的中点, BE//DC, 所以DF是△ABE的中位线,BE=2DF=12
    所以DF==6,
    设CD=x,由CF=CD,则DF==6,
    可得CD=9,故AD=BD=CD=9,
    故AB=1,
    故答案:1.
    .
    【点睛】
    本题主要考查三角形基本概念,综合运用三角形的知识可得答案。
    14、B
    【解析】
    过P点作PE⊥BP,垂足为P,交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.
    【详解】
    解:过P点作PE⊥BP,垂足为P,交BC于E,

    ∵AP垂直∠B的平分线BP于P,
    ∠ABP=∠EBP,
    又知BP=BP,∠APB=∠BPE=90°,
    ∴△ABP≌△BEP,
    ∴AP=PE,
    ∵△APC和△CPE等底同高,
    ∴S△APC=S△PCE,
    ∴三角形PBC的面积=三角形ABC的面积=cm1,
    选项中只有B的长方形面积为cm1,
    故选B.
    15、 2 2
    【解析】
    根据数量关系分别求出y1,y2,y3,y4,…,不难发现,每3次计算为一个循环组依次循环,用2006除以3,根据商和余数的情况确定y2006的值即可.
    【详解】
    y1=,
    y2=−=2,
    y3=−=,
    y4=−=,
    …,
    ∴每3次计算为一个循环组依次循环,
    ∵2006÷3=668余2,
    ∴y2006为第669循环组的第2次计算,与y2的值相同,
    ∴y2006=2,
    故答案为;2;;2.
    【点睛】
    本题考查反比例函数的定义,解题的关键是多运算找规律.
    16、(0,0)或(0,﹣8)或(﹣6,0)
    【解析】
    由P(﹣3,﹣4)可知,P到原点距离为5,而以P点为圆心,5为半径画圆,圆经过原点分别与x轴、y轴交于另外一点,共有三个.
    【详解】
    解:∵P(﹣3,﹣4)到原点距离为5,
    而以P点为圆心,5为半径画圆,圆经过原点且分别交x轴、y轴于另外两点(如图所示),
    ∴故坐标轴上到P点距离等于5的点有三个:(0,0)或(0,﹣8)或(﹣6,0).
    故答案是:(0,0)或(0,﹣8)或(﹣6,0).

    17、
    【解析】
    根据随机事件概率大小的求法,找准两点:
    ①符合条件的情况数目;
    ②全部情况的总数.
    二者的比值就是其发生的概率的大小.
    【详解】
    解:∵在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,
    ∴从中任意摸出一个球,则摸出白球的概率是.
    故答案为:.
    【点睛】
    本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
    18、11≤x<1
    【解析】
    根据对于实数x我们规定[x]不大于x最大整数,可得答案.
    【详解】
    由[]=5,得:

    解得11≤x<1,
    故答案是:11≤x<1.
    【点睛】
    考查了解一元一次不等式组,利用[x]不大于x最大整数得出不等式组是解题关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1),; (2);(3).
    【解析】
    试题分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.
    试题解析:(1);
    (2);
    (3)将选航模项目的名男生编上号码,将名女生编上号码. 用表格列出所有可能出现的结果:

    由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有种可能.(名男生、名女生).(如用树状图,酌情相应给分)
    考点:统计与概率的综合运用.
    20、(1);(2)MB=MD.
    【解析】
    (1)将A(3,2)分别代入y= ,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;
    (2)有S△OMB=S△OAC=×=3 ,可得矩形OBDC的面积为12;即OC×OB=12 ;进而可得m、n的值,故可得BM与DM的大小;比较可得其大小关系.
    【详解】
    (1)将A(3,2)代入中,得2,∴k=6,
    ∴反比例函数的表达式为.
    (2)BM=DM,理由:∵S△OMB=S△OAC=×=3,
    ∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12,
    即OC·OB=12,
    ∵OC=3,∴OB=4,即n=4,∴,
    ∴MB=,MD=,∴MB=MD.
    【点睛】
    本题考查了待定系数法求反比例函数和正比例函数解析式,反比例函数比例系数的几何意义,矩形的性质等知识.熟练掌握待定系数法是解(1)的关键,掌握反比例函数系数的几何意义是解(2)的关键.
    21、(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面积不变.②m的值为或2或8﹣4..
    【解析】
    (1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;
    (2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;
    (3)①△AGH的面积不变.理由三角形的面积公式计算即可;
    ②分三种情形分别求解即可解决问题.
    【详解】
    (1)∵四边形ABCD是正方形,
    ∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,
    ∴AC=,
    ∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,
    ∴∠AHC=∠ACG.
    故答案为=.
    (2)结论:AC2=AG•AH.
    理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,
    ∴△AHC∽△ACG,
    ∴,
    ∴AC2=AG•AH.
    (3)①△AGH的面积不变.
    理由:∵S△AGH=•AH•AG=AC2=×(4)2=1.
    ∴△AGH的面积为1.
    ②如图1中,当GC=GH时,易证△AHG≌△BGC,

    可得AG=BC=4,AH=BG=8,
    ∵BC∥AH,
    ∴,
    ∴AE=AB=.
    如图2中,当CH=HG时,

    易证AH=BC=4,
    ∵BC∥AH,
    ∴=1,
    ∴AE=BE=2.
    如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.

    在BC上取一点M,使得BM=BE,
    ∴∠BME=∠BEM=43°,
    ∵∠BME=∠MCE+∠MEC,
    ∴∠MCE=∠MEC=22.3°,
    ∴CM=EM,设BM=BE=m,则CM=EMm,
    ∴m+m=4,
    ∴m=4(﹣1),
    ∴AE=4﹣4(﹣1)=8﹣4,
    综上所述,满足条件的m的值为或2或8﹣4.
    【点睛】
    本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
    22、(1)△ACD 与△ABC相似;(2)AC2=AB•AD成立.
    【解析】
    (1)求出∠ADC=∠ACB=90°,根据相似三角形的判定推出即可;
    (2)根据相似三角形的性质得出比例式,再进行变形即可.
    【详解】
    解:(1)△ACD 与△ABC相似,
    理由是:∵在 Rt△ABC 中,∠ACB=90°,CD 是斜边AB上的高,
    ∴∠ADC=∠ACB=90°,
    ∵∠A=∠A,
    ∴△ACD∽∠ABC;
    (2)AC2=AB•AD成立,理由是:
    ∵△ACD∽∠ABC,
    ∴=,
    ∴AC2=AB•AD.
    【点睛】
    本题考查了相似三角形的性质和判定,能根据相似三角形的判定定理推出△ACD∽△ABC 是解此题的关键.
    23、(1)t=秒;(1)t=5﹣(s).
    【解析】
    (1)利用勾股定理列式求出 AB,再表示出 AP、AQ,然后分∠APQ 和∠AQP 是直角两种情况,利用相似三角形对应边成比例列式求解即可;
    (1)过点 P 作 PC⊥OA 于 C,利用∠OAB 的正弦求出 PC,然后根据三角形的面积公式列出方程求解即可.
    【详解】
    解:(1)∵点 A(0,6),B(8,0),
    ∴AO=6,BO=8,
    ∴AB= ==10,
    ∵点P的速度是每秒1个单位,点 Q 的速度是每秒1个单位,
    ∴AQ=t,AP=10﹣t,
    ①∠APQ是直角时,△APQ∽△AOB,
    ∴,
    即,
    解得 t=>6,舍去;
    ②∠AQP 是直角时,△AQP∽△AOB,
    ∴,
    即,
    解得 t=,
    综上所述,t=秒时,△APQ 与△AOB相似;

    (1)如图,过点 P 作 PC⊥OA 于点C,
    则 PC=AP•sin∠OAB=(10﹣t)×=(10﹣t),
    ∴△APQ的面积=×t×(10﹣t)=8,
    整理,得:t1﹣10t+10=0,
    解得:t=5+>6(舍去),或 t=5﹣,
    故当 t=5﹣(s)时,△APQ的面积为 8cm1.
    【点睛】
    本题主要考查了相似三角形的判定与性质、锐角三角函数、三角形的面积以及一元二次方程的应用能力,分类讨论是解题的关键.
    24、(1)见解析(2)BD=2
    【解析】
    解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,
    ∴CD=ED,∠DEA=∠C=90°.
    ∵在Rt△ACD和Rt△AED中,,
    ∴Rt△ACD≌Rt△AED(HL).
    (2)∵Rt△ACD≌Rt△AED ,CD=1,∴DC=DE=1.
    ∵DE⊥AB,∴∠DEB=90°.
    ∵∠B=30°,∴BD=2DE=2.
    (1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.
    (2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.
    25、(1)k=10,b=3;(2).
    【解析】
    试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.
    试题解析:(1)、把x=2,y=5代入y=,得k==2×5=10
    把x=2,y=5代入y=x+b,得b=3
    (2)、∵y=x+3 ∴当y=0时,x=-3, ∴OB=3 ∴S=×3×5=7.5
    考点:一次函数与反比例函数的综合问题.
    26、(1)﹣1、﹣1,﹣3、﹣3,﹣1、﹣2;(2)见解析,1.
    【解析】
    (1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;
    (2)作出点C关于y轴的对称点,然后连接得到三角形,根据面积公式计算可得.
    【详解】
    (1)如图所示,△A1B1C1即为所求.

    A1(﹣1,﹣1)B1(﹣3,﹣3),C1(﹣1,﹣2).
    故答案为:﹣1、﹣1、﹣3、﹣3、﹣1、﹣2;
    (2)如图所示,△CC1C2的面积是2×1=1.
    故答案为:1.
    【点睛】
    本题考查了作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.
    27、130 小明 平均数接近,而排球成绩的中位数和众数都较高.
    【解析】
    根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数;
    根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论.
    【详解】
    解:补全表格成绩:
    人数
    项目




    10
    排球
    1
    1
    2
    7
    5
    篮球
    0
    2
    1
    10
    3
    达到优秀的人数约为(人);
    故答案为130;
    同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高答案不唯一,理由需支持判断结论
    故答案为小明,平均数接近,而排球成绩的中位数和众数都较高.
    【点睛】
    本题考查众数、中位数,平均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体.

    相关试卷

    2021-2022学年辽宁省新宾县达标名校中考数学最后冲刺模拟试卷含解析: 这是一份2021-2022学年辽宁省新宾县达标名校中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了点A,股市有风险,投资需谨慎,若2<<3,则a的值可以是,下列因式分解正确的是等内容,欢迎下载使用。

    2021-2022学年湖北省恩施州宣恩县中考数学最后冲刺浓缩精华卷含解析: 这是一份2021-2022学年湖北省恩施州宣恩县中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,某市2017年国内生产总值等内容,欢迎下载使用。

    2021-2022学年广东省云浮达标名校中考数学最后冲刺模拟试卷含解析: 这是一份2021-2022学年广东省云浮达标名校中考数学最后冲刺模拟试卷含解析,共19页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map