湖北省武汉市黄陂区重点达标名校2021-2022学年中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.据浙江省统计局发布的数据显示,2017年末,全省常住人口为5657万人数据“5657万”用科学记数法表示为
A. B. C. D.
2.已知一组数据2、x、8、1、1、2的众数是2,那么这组数据的中位数是( )
A.3.1; B.4; C.2; D.6.1.
3.下列实数为无理数的是 ( )
A.-5 B. C.0 D.π
4.若二次函数的图象经过点(﹣1,0),则方程的解为( )
A., B., C., D.,
5.已知二次函数的图象如图所示,则下列结论:①ac>0;②a-b+c<0; 当时,;,其中错误的结论有
A.②③ B.②④ C.①③ D.①④
6.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是( )
A.25° B.27.5° C.30° D.35°
7.用加减法解方程组时,若要求消去,则应( )
A. B. C. D.
8.剪纸是我国传统的民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形的是( )
A. B. C. D.
9.如图,将△ABC 绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点 A′恰好落在 BC 边的延长线上,下列结论错误的是( )
A.∠BCB′=∠ACA′ B.∠ACB=2∠B
C.∠B′CA=∠B′AC D.B′C 平分∠BB′A′
10.下列图形中,是中心对称但不是轴对称图形的为( )
A. B.
C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,点A在反比例函数y=(x>0)的图像上,过点A作AD⊥y轴于点D,延长AD至点C,使CD=2AD,过点A作AB⊥x轴于点B,连结BC交y轴于点E,若△ABC的面积为6,则k的值为________.
12.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的半径是____cm.
13.有一组数据:3,a,4,6,7,它们的平均数是5,则a=_____,这组数据的方差是_____.
14.如图,在△ABC中,∠ACB=90°,AC=BC=3,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=2,则sin∠BFD的值为_____.
15.已知,直接y=kx+b(k>0,b>0)与x轴、y轴交A、B两点,与双曲线y=(x>0)交于第一象限点C,若BC=2AB,则S△AOB=________.
16.某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.该年级共有700人,估计该年级足球测试成绩为D等的人数为_____人.
三、解答题(共8题,共72分)
17.(8分)如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.如图1,求C点坐标;如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.
18.(8分)解不等式组:并写出它的所有整数解.
19.(8分)
20.(8分)如图,在中,,点是上一点.尺规作图:作,使与、都相切.(不写作法与证明,保留作图痕迹)若与相切于点D,与的另一个交点为点,连接、,求证:.
21.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.
求证:CF⊥DE于点F.
22.(10分)已知关于的一元二次方程.试证明:无论取何值此方程总有两个实数根;若原方程的两根,满足,求的值.
23.(12分)如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.1.)
24.某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(1)(部分)
根据上图提供的信息回答下列问题:
(1)被抽查的居民中,人数最多的年龄段是 岁;
(1)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图1.
注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数×100%.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
【详解】
解:5657万用科学记数法表示为,
故选:C.
【点睛】
此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
2、A
【解析】∵数据组2、x、8、1、1、2的众数是2,
∴x=2,
∴这组数据按从小到大排列为:2、2、2、1、1、8,
∴这组数据的中位数是:(2+1)÷2=3.1.
故选A.
3、D
【解析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
A、﹣5是整数,是有理数,选项错误;
B、是分数,是有理数,选项错误;
C、0是整数,是有理数,选项错误;
D、π是无理数,选项正确.
故选D.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
4、C
【解析】
∵二次函数的图象经过点(﹣1,0),∴方程一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数的图象与x轴的另一个交点为:(3,0),∴方程的解为:,.
故选C.
考点:抛物线与x轴的交点.
5、C
【解析】
①根据图象的开口方向,可得a的范围,根据图象与y轴的交点,可得c的范围,根据有理数的乘法,可得答案;
②根据自变量为-1时函数值,可得答案;
③根据观察函数图象的纵坐标,可得答案;
④根据对称轴,整理可得答案.
【详解】
图象开口向下,得a<0,
图象与y轴的交点在x轴的上方,得c>0,ac<,故①错误;
②由图象,得x=-1时,y<0,即a-b+c<0,故②正确;
③由图象,得
图象与y轴的交点在x轴的上方,即当x<0时,y有大于零的部分,故③错误;
④由对称轴,得x=-=1,解得b=-2a,
2a+b=0
故④正确;
故选D.
【点睛】
考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
6、D
【解析】
分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.
详解:∵∠A=60°,∠ADC=85°,
∴∠B=85°-60°=25°,∠CDO=95°,
∴∠AOC=2∠B=50°,
∴∠C=180°-95°-50°=35°
故选D.
点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.
7、C
【解析】
利用加减消元法消去y即可.
【详解】
用加减法解方程组时,若要求消去y,则应①×5+②×3,
故选C
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
8、C
【解析】
【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【详解】A、不是中心对称图形,是轴对称图形,故本选项错误;
B、不是中心对称图形,是轴对称图形,故本选项错误;
C、既不是中心对称图形,也不是轴对称图形,故本选项正确;
D、是中心对称图形,不是轴对称图形,故本选项错误,
故选C.
【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.
9、C
【解析】
根据旋转的性质求解即可.
【详解】
解:根据旋转的性质,A:∠与∠均为旋转角,故∠=∠,故A正确;
B:,,
又
,
,故B正确;
D:,
B′C平分∠BB′A′,故D正确.
无法得出C中结论,
故答案:C.
【点睛】
本题主要考查三角形旋转后具有的性质,注意灵活运用各条件
10、C
【解析】
试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.
故选C.
考点:中心对称图形;轴对称图形.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
连结BD,利用三角形面积公式得到S△ADB=S△ABC=2,则S矩形OBAD=2S△ADB=1,于是可根据反比例函数的比例系数k的几何意义得到k的值.
【详解】
连结BD,如图,
∵DC=2AD,
∴S△ADB=S△BDC=S△BAC=×6=2,
∵AD⊥y轴于点D,AB⊥x轴,
∴四边形OBAD为矩形,
∴S矩形OBAD=2S△ADB=2×2=1,
∴k=1.
故答案为:1.
【点睛】
本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
12、5
【解析】
本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.
【详解】
解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.
连接OC,交AB于D点.连接OA.
∵尺的对边平行,光盘与外边缘相切,
∴OC⊥AB.
∴AD=4cm.
设半径为Rcm,则R2=42+(R-2)2,
解得R=5,
∴该光盘的半径是5cm.
故答案为5
【点睛】
此题考查了切线的性质及垂径定理,建立数学模型是关键.
13、5 1.
【解析】
∵一组数据:3,a,4,6,7,它们的平均数是5,
∴,
解得,,
∴=1.
故答案为5,1.
14、
【解析】
分析:过点D作DGAB于点G.根据折叠性质,可得AE=DE=2,AF=DF,CE=1,
在Rt△DCE中,由勾股定理求得,所以DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,由锐角三角函数求得,;
设AF=DF=x,则FG= ,在Rt△DFG中,根据勾股定理得方程=,解得,从而求得.的值
详解:
如图所示,过点D作DGAB于点G.
根据折叠性质,可知△AEF△DEF,
∴AE=DE=2,AF=DF,CE=AC-AE=1,
在Rt△DCE中,由勾股定理得,
∴DB=;
在Rt△ABC中,由勾股定理得;
在Rt△DGB中,,;
设AF=DF=x,得FG=AB-AF-GB=,
在Rt△DFG中,,
即=,
解得,
∴==.
故答案为.
点睛:主要考查了翻折变换的性质、勾股定理、锐角三件函数的定义;解题的关键是灵活运用折叠的性质、勾股定理、锐角三角函数的定义等知识来解决问题.
15、
【解析】
根据题意可设出点C的坐标,从而得到OA和OB的长,进而得到△AOB的面积即可.
【详解】
∵直接y=kx+b与x轴、y轴交A、B两点,与双曲线y=交于第一象限点C,若BC=2AB,设点C的坐标为(c,)
∴OA=0.5c,OB==,
∴S△AOB===
【点睛】
此题主要考查反比例函数的图像,解题的关键是根据题意设出C点坐标进行求解.
16、1
【解析】
试题解析:∵总人数为14÷28%=50(人),
∴该年级足球测试成绩为D等的人数为(人).
故答案为:1.
三、解答题(共8题,共72分)
17、(1)C(1,-4).(2)证明见解析;(3)∠APB=135°,P(1,0).
【解析】
(1)作CH⊥y轴于H,证明△ABO≌△BCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;
(2)证明△PBA≌△QBC,根据全等三角形的性质得到PA=CQ;
(3)根据C、P,Q三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP,得到P点坐标.
【详解】
(1)作CH⊥y轴于H,
则∠BCH+∠CBH=90°,
∵AB⊥BC,
∴∠ABO+∠CBH=90°,
∴∠ABO=∠BCH,
在△ABO和△BCH中,
,
∴△ABO≌△BCH,
∴BH=OA=3,CH=OB=1,
∴OH=OB+BH=4,
∴C点坐标为(1,﹣4);
(2)∵∠PBQ=∠ABC=90°,
∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,
在△PBA和△QBC中,
,
∴△PBA≌△QBC,
∴PA=CQ;
(3)∵△BPQ是等腰直角三角形,
∴∠BQP=45°,
当C、P,Q三点共线时,∠BQC=135°,
由(2)可知,△PBA≌△QBC,
∴∠BPA=∠BQC=135°,
∴∠OPB=45°,
∴OP=OB=1,
∴P点坐标为(1,0).
【点睛】
本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.
18、原不等式组的解集为,它的所有整数解为0,1.
【解析】
先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后写出它的所有整数解即可.
【详解】
解:,
解不等式①,得,
解不等式②,得x<2,
∴原不等式组的解集为,
它的所有整数解为0,1.
【点睛】
本题主要考查了一元一次不等式组解集的求法.解一元一次不等式组的简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
19、﹣2<x<2.
【解析】
分别解不等式,进而得出不等式组的解集.
【详解】
解①得:x<2
解②得:x>﹣2.
故不等式组的解集为:﹣2<x<2.
【点睛】
本题主要考查了解一元一次不等式组,正确掌握不等式组的解法是解题的关键.
20、(1)详见解析;(2)详见解析.
【解析】
(1)利用角平分线的性质作出∠BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案.
(2)根据切线的性质,圆周角的性质,由相似判定可证△CDB∽△DEB,再根据相似三角形的性质即可求解.
【详解】
解:(1)如图,及为所求.
(2)连接.
∵是的切线,
∴,
∴,
即,
∵是直径,
∴,
∴,
∵,
∴,
∴,
又
∴∽
∴
∴.
【点睛】
本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作是解决此类题目的关键.
21、证明见解析.
【解析】
根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.
【详解】
∵AD∥BE,∴∠A=∠B.
在△ACD和△BEC中
∵,∴△ACD≌△BEC(SAS),∴DC=CE.
∵CF平分∠DCE,∴CF⊥DE(三线合一).
【点睛】
本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.
22、(1)证明见解析;(2)-2.
【解析】
分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥1,由此即可证出:无论p取何值此方程总有两个实数根;
(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.
详解:(1)证明:原方程可变形为x2-5x+6-p2-p=1.
∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥1,
∴无论p取何值此方程总有两个实数根;
(2)∵原方程的两根为x1、x2,
∴x1+x2=5,x1x2=6-p2-p.
又∵x12+x22-x1x2=3p2+1,
∴(x1+x2)2-3x1x2=3p2+1,
∴52-3(6-p2-p)=3p2+1,
∴25-18+3p2+3p=3p2+1,
∴3p=-6,
∴p=-2.
点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥1时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.
23、建筑物AB的高度约为5.9米
【解析】
在△CED中,得出DE,在△CFD中,得出DF,进而得出EF,列出方程即可得出建筑物AB的高度;
【详解】
在Rt△CED中,∠CED=58°,
∵tan58°=,
∴DE= ,
在Rt△CFD中,∠CFD=22°,
∵tan22°= ,
∴DF= ,
∴EF=DF﹣DE=-,
同理:EF=BE﹣BF= ,
∴=-,
解得:AB≈5.9(米),
答:建筑物AB的高度约为5.9米.
【点睛】
考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题.
24、(1)11~30;(1)31~40岁年龄段的满意人数为66人,图见解析;
【解析】
(1)取扇形统计图中所占百分比最大的年龄段即可;
(1)先求出总体感到满意的总人数,然后减去其它年龄段的人数即可,再补全条形图.
【详解】
(1)由扇形统计图可得11~30岁的人数所占百分比最大为39%,
所以,人数最多的年龄段是11~30岁;
(1)根据题意,被调查的人中,总体印象感到满意的有:400×83%=331人,
31~40岁年龄段的满意人数为:331﹣54﹣116﹣53﹣14﹣9=331﹣116=66人,
补全统计图如图.
【点睛】
本题考点:条形统计图与扇形统计图.
湖北省武汉市黄陂区重点达标名校2022年中考二模数学试题含解析: 这是一份湖北省武汉市黄陂区重点达标名校2022年中考二模数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
湖北省武汉市高新区重点名校2021-2022学年中考数学模拟预测题含解析: 这是一份湖北省武汉市高新区重点名校2021-2022学年中考数学模拟预测题含解析,共19页。试卷主要包含了对于点A,等内容,欢迎下载使用。
湖北省省直辖县重点达标名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份湖北省省直辖县重点达标名校2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了方程的解是.等内容,欢迎下载使用。