湖北省武汉市江夏一中学2021-2022学年中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列说法:
四边相等的四边形一定是菱形
顺次连接矩形各边中点形成的四边形一定是正方形
对角线相等的四边形一定是矩形
经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分
其中正确的有 个.
A.4 B.3 C.2 D.1
2.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是( )
A.8 B.﹣8 C.﹣12 D.12
3.设点和是反比例函数图象上的两个点,当<<时,<,则一次函数的图象不经过的象限是
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.关于x的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,则实数m的取值范围是( )
A.且 B. C.且 D.
5.在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的( )
A.众数 B.中位数 C.平均数 D.方差
6.已知△ABC,D是AC上一点,尺规在AB上确定一点E,使△ADE∽△ABC,则符合要求的作图痕迹是( )
A. B.
C. D.
7.如图,已知正五边形内接于,连结,则的度数是( )
A. B. C. D.
8.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为( )
A.4 B..5 C.6 D.8
9.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为40km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( )
A.甲的速度是10km/h B.乙的速度是20km/h
C.乙出发h后与甲相遇 D.甲比乙晚到B地2h
10.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )
A.360元 B.720元 C.1080元 D.2160元
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在梯形ABCD中,AD∥BC,∠A=90°,点E在边AB上,AD=BE,AE=BC,由此可以知道△ADE旋转后能与△BEC重合,那么旋转中心是_____.
12.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是_____.
13.如果不等式组的解集是x<2,那么m的取值范围是_____
14.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=____°.
15.一元二次方程x2+mx+3=0的一个根为- 1,则另一个根为 .
16.如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为_____.
17.有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;
⑤由a2=b2,得a=b.其中正确的是_____.
三、解答题(共7小题,满分69分)
18.(10分)(1)如图1,在矩形ABCD中,AB=2,BC=5,∠MPN=90°,且∠MPN的直角顶点在BC边上,BP=1.
①特殊情形:若MP过点A,NP过点D,则= .
②类比探究:如图2,将∠MPN绕点P按逆时针方向旋转,使PM交AB边于点E,PN交AD边于点F,当点E与点B重合时,停止旋转.在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由.
(2)拓展探究:在Rt△ABC中,∠ABC=90°,AB=BC=2,AD⊥AB,⊙A的半径为1,点E是⊙A上一动点,CF⊥CE交AD于点F.请直接写出当△AEB为直角三角形时的值.
19.(5分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.
20.(8分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;如果△ABC是等边三角形,试求这个一元二次方程的根.
21.(10分)一辆汽车,新车购买价30万元,第一年使用后折旧,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值为万元,求这辆车第二、三年的年折旧率.
22.(10分)如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.求BF的长.
23.(12分)如图1,已知扇形MON的半径为,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.
(1)如图2,当AB⊥OM时,求证:AM=AC;
(2)求y关于x的函数关系式,并写出定义域;
(3)当△OAC为等腰三角形时,求x的值.
24.(14分)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.
(1)求证:PC是⊙O的切线;
(2)若PC=3,PF=1,求AB的长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
∵四边相等的四边形一定是菱形,∴①正确;
∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;
∵对角线相等的平行四边形才是矩形,∴③错误;
∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;
其中正确的有2个,故选C.
考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.
2、D
【解析】
根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.
【详解】
∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.
故选D.
【点睛】
本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.
3、A
【解析】
∵点和是反比例函数图象上的两个点,当<<1时,<,即y随x增大而增大,
∴根据反比例函数图象与系数的关系:当时函数图象的每一支上,y随x的增大而减小;当时,函数图象的每一支上,y随x的增大而增大.故k<1.
∴根据一次函数图象与系数的关系:一次函数的图象有四种情况:
①当,时,函数的图象经过第一、二、三象限;
②当,时,函数的图象经过第一、三、四象限;
③当,时,函数的图象经过第一、二、四象限;
④当,时,函数的图象经过第二、三、四象限.
因此,一次函数的,,故它的图象经过第二、三、四象限,不经过第一象限.故选A.
4、A
【解析】
根据一元二次方程的系数结合根的判别式△>1,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.
【详解】
∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=1有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.
故选B.
【点睛】
本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.
5、B
【解析】
解:11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
故选B.
【点睛】
本题考查统计量的选择,掌握中位数的意义是本题的解题关键.
6、A
【解析】
以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.
【详解】
如图,点E即为所求作的点.故选:A.
【点睛】
本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.
7、C
【解析】
根据多边形内角和定理、正五边形的性质求出∠ABC、CD=CB,根据等腰三角形的性质求出∠CBD,计算即可.
【详解】
∵五边形为正五边形
∴
∵
∴
∴
故选:C.
【点睛】
本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.
8、C
【解析】
解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得
,
即,
解得EF=6,
故选C.
9、B
【解析】
由图可知,甲用4小时走完全程40km,可得速度为10km/h;
乙比甲晚出发一小时,用1小时走完全程,可得速度为40km/h.
故选B
10、C
【解析】
根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.
【详解】
3m×2m=6m2,
∴长方形广告牌的成本是120÷6=20元/m2,
将此广告牌的四边都扩大为原来的3倍,
则面积扩大为原来的9倍,
∴扩大后长方形广告牌的面积=9×6=54m2,
∴扩大后长方形广告牌的成本是54×20=1080元,
故选C.
【点睛】
本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、CD的中点
【解析】
根据旋转的性质,其中对应点到旋转中心的距离相等,于是得到结论.
【详解】
∵△ADE旋转后能与△BEC重合,
∴△ADE≌△BEC,
∴∠AED=∠BCE,∠B=∠A=90°,∠ADE=∠BEC,DE=EC,
∴∠AED+∠BEC=90°,
∴∠DEC=90°,
∴△DEC是等腰直角三角形,
∴D与E,E与C是对应顶点,
∵CD的中点到D,E,C三点的距离相等,
∴旋转中心是CD的中点,
故答案为:CD的中点.
【点睛】
本题考查了旋转的性质,等腰直角三角形的性质,关键是明确旋转中心的概念.
12、35°
【解析】
分析:先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°-∠3代入数据进行计算即可得解.
详解:∵直尺的两边互相平行,∠1=25°,
∴∠3=∠1=25°,
∴∠2=60°-∠3=60°-25°=35°.
故答案为35°.
点睛:本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键.
13、m≥1.
【解析】
分析:先解第一个不等式,再根据不等式组的解集是x<1,从而得出关于m的不等式,解不等式即可.
详解:解第一个不等式得,x<1,
∵不等式组的解集是x<1,
∴m≥1,
故答案为m≥1.
点睛:本题是已知不等式组的解集,求不等式中字母取值范围的问题.可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.
14、115°
【解析】
根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.
【详解】
解:连接OC,如右图所示,
由题意可得,∠OCP=90°,∠P=40°,
∴∠COB=50°,
∵OC=OB,
∴∠OCB=∠OBC=65°,
∵四边形ABCD是圆内接四边形,
∴∠D+∠ABC=180°,
∴∠D=115°,
故答案为:115°.
【点睛】
本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.
15、-1.
【解析】
因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解.
【详解】
∵一元二次方程x2+mx+1=0的一个根为-1,设另一根为x1,
由根与系数关系:-1•x1=1,
解得x1=-1.
故答案为-1.
16、1
【解析】
根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是1时经过B,则AB=1-4=4,当直线经过D点,设其交AB与E,则DE=2 ,作DF⊥AB于点F.利用三角函数即可求得DF即平行四边形的高,然后利用平行四边形的面积公式即可求解
【详解】
解:由图象可知,当移动距离为4时,直线经过点A,当移动距离为7时,直线经过点D,移动距离为1时,直线经过点B,
则AB=1﹣4=4,
当直线经过点D,设其交AB于点E,则DE=2 ,作DF⊥AB于点F,
∵y=﹣x于x轴负方向成45°角,且AB∥x轴,
∴∠DEF=45°,
∴DF=EF,
∴在直角三角形DFE中,DF2+EF2=DE2,
∴2DF2=1
∴DF=2,
那么ABCD面积为:AB•DF=4×2=1,
故答案为1.
【点睛】
此题主要考查平行四边形的性质和一次函数图象与几何变换,解题关键在于利用好辅助线
17、①②④
【解析】
①由a=b,得5﹣2a=5﹣2b,根据等式的性质先将式子两边同时乘以-2,再将等式两边同时加上5,等式仍成立,所以本选项正确,
②由a=b,得ac=bc,根据等式的性质,等式两边同时乘以相同的式子,等式仍成立,所以本选项正确,
③由a=b,得,根据等式的性质,等式两边同时除以一个不为0的数或式子,等式仍成立,因为可能为0,所以本选项不正确,
④由,得3a=2b, 根据等式的性质,等式两边同时乘以相同的式子6c,等式仍成立,所以本选项正确,
⑤因为互为相反数的平方也相等,由a2=b2,得a=b,或a=-b,所以本选项错误,
故答案为: ①②④.
三、解答题(共7小题,满分69分)
18、 (1) ①特殊情形:;②类比探究: 是定值,理由见解析;(2) 或
【解析】
(1)证明,即可求解;
(2)点E与点B重合时,四边形EBFA为矩形,即可求解;
(3)分时、时,两种情况分别求解即可.
【详解】
解:(1),
,
故答案为;
(2)点E与点B重合时,四边形EBFA为矩形,
则为定值;
(3)①当时,如图3,
过点E、F分别作直线BC的垂线交于点G,H,
由(1)知:,
,同理,
.
则,
则 ;
②当时,如图4,
,
则
,
,则,
,
则 ,
故或 .
【点睛】
本题考查的圆知识的综合运用,涉及到解直角三角形的基本知识,其中(3),要注意分类求解,避免遗漏.
19、详见解析.
【解析】
试题分析:利用SSS证明△ABC≌△DEF,根据全等三角形的性质可得∠B=∠DEF,再由平行线的判定即可得AB∥DE.
试题解析:证明:由BE=CF可得BC=EF,
又AB=DE,AC=DF,
故△ABC≌△DEF(SSS),
则∠B=∠DEF,
∴AB∥DE.
考点:全等三角形的判定与性质.
20、 (1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.
【解析】
试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;
(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;
(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.
试题解析:(1)△ABC是等腰三角形;
理由:∵x=﹣1是方程的根,
∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,
∴a+c﹣2b+a﹣c=0,
∴a﹣b=0,
∴a=b,
∴△ABC是等腰三角形;
(2)∵方程有两个相等的实数根,
∴(2b)2﹣4(a+c)(a﹣c)=0,
∴4b2﹣4a2+4c2=0,
∴a2=b2+c2,
∴△ABC是直角三角形;
(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:
2ax2+2ax=0,
∴x2+x=0,
解得:x1=0,x2=﹣1.
考点:一元二次方程的应用.
21、这辆车第二、三年的年折旧率为.
【解析】
设这辆车第二、三年的年折旧率为x,则第二年这就后的价格为30(1-20%)(1-x)元,第三年折旧后的而价格为30(1-20%)(1-x)2元,与第三年折旧后的价格为17.34万元建立方程求出其解即可.
【详解】
设这辆车第二、三年的年折旧率为,依题意,得
整理得,
解得,.
因为折旧率不可能大于1,所以不合题意,舍去.
所以
答:这辆车第二、三年的年折旧率为.
【点睛】
本题是一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.56万元建立方程是关键.
22、BF的长度是1cm.
【解析】
利用“两角法”证得△BEF∽△CDF,利用相似三角形的对应边成比例来求线段CF的长度.
【详解】
解:如图,在矩形ABCD中:∠DFC=∠EFB,∠EBF=∠FCD=90°,
∴△BEF∽△CDF;
∴=,
又∵AD=BC=260cm ,AB=CD=130cm ,AE=60cm
∴BE=70cm, CD=130cm,BC=260cm ,CF=(260-BF)cm
∴=,
解得:BF=1.
即:BF的长度是1cm.
【点睛】
本题主要考查相似三角形的判定和性质,关键要掌握:有两角对应相等的两三角形相似;两三角形相似,对应边的比相等.
23、(1)证明见解析;(2) .();(3) .
【解析】
分析:(1)先判断出∠ABM=∠DOM,进而判断出△OAC≌△BAM,即可得出结论;
(2)先判断出BD=DM,进而得出,进而得出AE=,再判断出,即可得出结论;
(3)分三种情况利用勾股定理或判断出不存在,即可得出结论.
详解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.
∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.
∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,
∴AC=AM.
(2)如图2,过点D作DE∥AB,交OM于点E.
∵OB=OM,OD⊥BM,∴BD=DM.
∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.
∵DE∥AB,∴,
∴.()
(3)(i) 当OA=OC时.∵.在Rt△ODM中,.
∵.解得,或(舍).
(ii)当AO=AC时,则∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此种情况不存在.
(ⅲ)当CO=CA时,则∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此种情况不存在.
即:当△OAC为等腰三角形时,x的值为.
点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y关于x的函数关系式是解答本题的关键.
24、(1)证明见解析;(2)1.
【解析】
试题分析:(1)连接OC,欲证明PC是⊙O的切线,只要证明PC⊥OC即可;
(2)延长PO交圆于G点,由切割线定理求出PG即可解决问题.
试题解析:(1)如图,连接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切线;
(2)延长PO交圆于G点,∵PF×PG=,PC=3,PF=1,∴PG=9,∴FG=9﹣1=1,∴AB=FG=1.
考点:切线的判定;切割线定理.
湖北省武汉市外国语校2021-2022学年中考数学押题试卷含解析: 这是一份湖北省武汉市外国语校2021-2022学年中考数学押题试卷含解析,共18页。试卷主要包含了如图的立体图形,从左面看可能是,估计-1的值在等内容,欢迎下载使用。
2022届湖北省武汉市华中学师范大第一附属中学中考押题数学预测卷含解析: 这是一份2022届湖北省武汉市华中学师范大第一附属中学中考押题数学预测卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列计算中,正确的是,小手盖住的点的坐标可能为等内容,欢迎下载使用。
2022届湖北省武汉市南湖区重点中学中考押题数学预测卷含解析: 这是一份2022届湖北省武汉市南湖区重点中学中考押题数学预测卷含解析,共18页。试卷主要包含了在平面直角坐标系中,点,若二元一次方程组的解为则的值为,若点P,下列等式正确的是等内容,欢迎下载使用。