湖北省广水市2021-2022学年中考一模数学试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加1600,设扩大后的正方形绿地边长为xm,下面所列方程正确的是( )
A.x(x-60)=1600
B.x(x+60)=1600
C.60(x+60)=1600
D.60(x-60)=1600
2.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )
A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥
3.一个多边形的每个内角均为120°,则这个多边形是( )
A.四边形 B.五边形 C.六边形 D.七边形
4.2018的相反数是( )
A. B.2018 C.-2018 D.
5.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为( )
A.2.3 B.2.4 C.2.5 D.2.6
6.如图直线y=mx与双曲线y=交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是( )
A.1 B.2 C.3 D.4
7.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的( )
A.平均数 B.中位数 C.众数 D.方差
8.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )
A. B. C. D.
9.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( )
A.180元 B.200元 C.225元 D.259.2元
10.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为( )
A.100° B.80° C.50° D.20°
二、填空题(共7小题,每小题3分,满分21分)
11.已知a+=2,求a2+=_____.
12.-3的倒数是___________
13.函数y=的自变量x的取值范围为____________.
14.若是关于的完全平方式,则__________.
15.如图,直线a、b相交于点O,若∠1=30°,则∠2=___
16.如图,在中,于点,于点,为边的中点,连接,则下列结论:①,②,③为等边三角形,④当时,.请将正确结论的序号填在横线上__.
17.如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为 .
三、解答题(共7小题,满分69分)
18.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.
(1)求证:△ADC∽△CDB;
(2)若AC=2,AB=CD,求⊙O半径.
19.(5分)如图,已知是的外接圆,圆心在的外部,,,求的半径.
20.(8分)已知:如图.D是的边上一点,,交于点M,.
(1)求证:;
(2)若,试判断四边形的形状,并说明理由.
21.(10分) (1)解方程: +=4
(2)解不等式组并把解集表示在数轴上:.
22.(10分)如图,男生楼在女生楼的左侧,两楼高度均为90m,楼间距为AB,冬至日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为DA,已知.
求楼间距AB;
若男生楼共30层,层高均为3m,请通过计算说明多少层以下会受到挡光的影响?参考数据:,,,,,
23.(12分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.
24.(14分)如图,在平面直角坐标系 中,函数的图象与直线交于点A(3,m).求k、m的值;已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数 的图象于点N.
①当n=1时,判断线段PM与PN的数量关系,并说明理由;
②若PN≥PM,结合函数的图象,直接写出n的取值范围.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x米和(x-60)米,根据长方形的面积计算法则列出方程.
考点:一元二次方程的应用.
2、D
【解析】
试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.
故选D
考点:几何体的形状
3、C
【解析】
由题意得,180°(n-2)=120°,
解得n=6.故选C.
4、C
【解析】
【分析】根据只有符号不同的两个数互为相反数进行解答即可得.
【详解】2018与-2018只有符号不同,
由相反数的定义可得2018的相反数是-2018,
故选C.
【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.
5、B
【解析】
试题分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,
∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,
∵S△ABC=AC×BC=AB×CD,∴AC×BC=AB×CD,即CD===,
∴⊙C的半径为,故选B.
考点:圆的切线的性质;勾股定理.
6、B
【解析】
此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=1S△AOM并结合反比例函数系数k的几何意义得到k的值.
【详解】
根据双曲线的对称性可得:OA=OB,则S△ABM=1S△AOM=1,S△AOM=|k|=1,
则k=±1.又由于反比例函数图象位于一三象限,k>0,所以k=1.
故选B.
【点睛】
本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.
7、B
【解析】
根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.
【详解】
因为需要保证不少于50%的骑行是免费的,
所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,
故选B.
【点睛】
本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。
8、B
【解析】
△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.
【详解】
解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,
当P点由B运动到C点时,即2<x<4时,y=×2×2=2,
符合题意的函数关系的图象是B;
故选B.
【点睛】
本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.
9、A
【解析】
设这种商品每件进价为x元,根据题中的等量关系列方程求解.
【详解】
设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.
【点睛】
本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.
10、B
【解析】
解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC∥AB,则∠4=30°+50°=80°.故选B.
点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
试题分析:∵==4,∴=4-1=1.故答案为1.
考点:完全平方公式.
12、
【解析】
乘积为1的两数互为相反数,即a的倒数即为,符号一致
【详解】
∵-3的倒数是
∴答案是
13、x≥-1
【解析】
试题分析:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.
考点:函数自变量的取值范围.
14、1或-1
【解析】
【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.
详解:∵x2+2(m-3)x+16是关于x的完全平方式,
∴2(m-3)=±8,
解得:m=-1或1,
故答案为-1或1.
点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.
15、30°
【解析】
因∠1和∠2是邻补角,且∠1=30°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣30°=150°.
解:∵∠1+∠2=180°,
又∠1=30°,
∴∠2=150°.
16、①③④
【解析】
①根据直角三角形斜边上的中线等于斜边的一半可判断①;
②先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②;
③先根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断③;
④当∠ABC=45°时,∠BCN=45°,进而判断④.
【详解】
①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,
∴PM=BC,PN=BC,
∴PM=PN,正确;
②在△ABM与△ACN中,
∵∠A=∠A,∠AMB=∠ANC=90°,
∴△ABM∽△ACN,
∴,错误;
③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,
∴∠ABM=∠ACN=30°,
在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,
∵点P是BC的中点,BM⊥AC,CN⊥AB,
∴PM=PN=PB=PC,
∴∠BPN=2∠BCN,∠CPM=2∠CBM,
∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,
∴∠MPN=60°,
∴△PMN是等边三角形,正确;
④当∠ABC=45°时,∵CN⊥AB于点N,
∴∠BNC=90°,∠BCN=45°,
∵P为BC中点,可得BC=PB=PC,故④正确.
所以正确的选项有:①③④
故答案为①③④
【点睛】
本题主要考查了直角三角形斜边的中线等于斜边的一半的性质,相似三角形、等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析图形并熟练掌握性质是解题的关键.
17、1.
【解析】
∵ABCD的周长为33,∴2(BC+CD)=33,则BC+CD=2.
∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=3.
又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD.∴OE=BC.
∴△DOE的周长="OD+OE+DE=" OD +(BC+CD)=3+9=1,即△DOE的周长为1.
三、解答题(共7小题,满分69分)
18、(1)见解析;(2)
【解析】
分析: (1)首先连接CO,根据CD与⊙O相切于点C,可得:∠OCD=90°;然后根据AB是圆O的直径,可得:∠ACB=90°,据此判断出∠CAD=∠BCD,即可推得△ADC∽△CDB.
(2)首先设CD为x,则AB=32x,OC=OB=34x,用x表示出OD、BD;然后根据△ADC∽△CDB,可得:ACCB=CDBD,据此求出CB的值是多少,即可求出⊙O半径是多少.
详解:
(1)证明:如图,连接CO,
,
∵CD与⊙O相切于点C,
∴∠OCD=90°,
∵AB是圆O的直径,
∴∠ACB=90°,
∴∠ACO=∠BCD,
∵∠ACO=∠CAD,
∴∠CAD=∠BCD,
在△ADC和△CDB中,
∴△ADC∽△CDB.
(2)解:设CD为x,
则AB=x,OC=OB=x,
∵∠OCD=90°,
∴OD===x,
∴BD=OD﹣OB=x﹣x=x,
由(1)知,△ADC∽△CDB,
∴=,
即,
解得CB=1,
∴AB==,
∴⊙O半径是.
点睛: 此题主要考查了切线的性质和应用,以及勾股定理的应用,要熟练掌握.
19、4
【解析】
已知△ABC是等腰三角形,根据等腰三角形的性质,作于点,则直线为的中垂线,直线过点,在Rt△OBH中,用半径表示出OH的长,即可用勾股定理求得半径的长.
【详解】
作于点,则直线为的中垂线,直线过点,
,,
,
即,
.
【点睛】
考查垂径定理以及勾股定理,掌握垂径定理是解题的关键.
20、(1)证明见解析;(2)四边形ADCN是矩形,理由见解析.
【解析】
(1)根据平行得出∠DAM=∠NCM,根据ASA推出△AMD≌△CMN,得出AD=CN,推出四边形ADCN是平行四边形即可;
(2)根据∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC求出∠MCD=∠MDC,推出MD=MC,求出MD=MN=MA=MC,推出AC=DN,根据矩形的判定得出即可.
【详解】
证明:(1)∵CN∥AB,
∴∠DAM=∠NCM,
∵在△AMD和△CMN中,
∠DAM=∠NCM
MA=MC
∠DMA=∠NMC,
∴△AMD≌△CMN(ASA),
∴AD=CN,
又∵AD∥CN,
∴四边形ADCN是平行四边形,
∴CD=AN;
(2)解:四边形ADCN是矩形,
理由如下:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,
∴∠MCD=∠MDC,
∴MD=MC,
由(1)知四边形ADCN是平行四边形,
∴MD=MN=MA=MC,
∴AC=DN,
∴四边形ADCN是矩形.
【点睛】
本题考查了全等三角形的性质和判定,平行四边形的判定和性质,矩形的判定的应用,能综合运用性质进行推理是解此题的关键,综合性比较强,难度适中.
21、(1)x=1(2)4<x≤
【解析】
(1)先将整理方程再乘以最小公分母移项合并即可;
(2)求出每个不等式的解集,根据找不等式组解集的规律找出即可.
【详解】
(1)+=4,
方程整理得: =4,
去分母得:x﹣5=4(2x﹣3),
移项合并得:7x=7,
解得:x=1;
经检验x=1是分式方程的解;
(2)
解①得:x≤
解②得:x>4
∴不等式组的解集是4<x≤,
在数轴上表示不等式组的解集为:
.
【点睛】
本题考查了解一元二次方程组与分式方程,解题的关键是熟练的掌握解一元二次方程组与分式方程运算法则.
22、(1)的长为50m;(2)冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响.
【解析】
如图,作于M,于则,设想办法构建方程即可解决问题.
求出AC,AD,分两种情形解决问题即可.
【详解】
解:如图,作于M,于则,设.
在中,,
在中,,
,
,
,
的长为50m.
由可知:,
,,
,,
冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响.
【点睛】
考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
23、详见解析.
【解析】
试题分析:利用SSS证明△ABC≌△DEF,根据全等三角形的性质可得∠B=∠DEF,再由平行线的判定即可得AB∥DE.
试题解析:证明:由BE=CF可得BC=EF,
又AB=DE,AC=DF,
故△ABC≌△DEF(SSS),
则∠B=∠DEF,
∴AB∥DE.
考点:全等三角形的判定与性质.
24、 (1) k的值为3,m的值为1;(2)0<n≤1或n≥3.
【解析】
分析:(1)将A点代入y=x-2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.
(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;
②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.
详解:(1)将A(3,m)代入y=x-2,
∴m=3-2=1,
∴A(3,1),
将A(3,1)代入y=,
∴k=3×1=3,
m的值为1.
(2)①当n=1时,P(1,1),
令y=1,代入y=x-2,
x-2=1,
∴x=3,
∴M(3,1),
∴PM=2,
令x=1代入y=,
∴y=3,
∴N(1,3),
∴PN=2
∴PM=PN,
②P(n,n),
点P在直线y=x上,
过点P作平行于x轴的直线,交直线y=x-2于点M,
M(n+2,n),
∴PM=2,
∵PN≥PM,
即PN≥2,
∴0<n≤1或n≥3
点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.
2023年湖北省随州市广水市中考二模数学试题(五月)(含解析): 这是一份2023年湖北省随州市广水市中考二模数学试题(五月)(含解析),共28页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年湖北省广水市中考数学专项突破模拟试题(一模二模)含解析: 这是一份2022-2023学年湖北省广水市中考数学专项突破模拟试题(一模二模)含解析,共59页。试卷主要包含了 如果,那么, 下列计算正确是,06秒,10, 点P关于x轴的对称点的坐标是等内容,欢迎下载使用。
湖北省广水市市马坪镇2021-2022学年中考数学模试卷含解析: 这是一份湖北省广水市市马坪镇2021-2022学年中考数学模试卷含解析,共23页。试卷主要包含了若M,下列命题中错误的有个,把一副三角板如图,方程x2﹣3x=0的根是等内容,欢迎下载使用。