搜索
    上传资料 赚现金
    英语朗读宝

    湖北省丹江口市重点达标名校2022年中考数学五模试卷含解析

    湖北省丹江口市重点达标名校2022年中考数学五模试卷含解析第1页
    湖北省丹江口市重点达标名校2022年中考数学五模试卷含解析第2页
    湖北省丹江口市重点达标名校2022年中考数学五模试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省丹江口市重点达标名校2022年中考数学五模试卷含解析

    展开

    这是一份湖北省丹江口市重点达标名校2022年中考数学五模试卷含解析,共23页。试卷主要包含了计算的结果是,若与 互为相反数,则x的值是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边和平行线成45°角,则三角尺斜边的长度为(  )

    A.12cm B.12cm C.24cm D.24cm
    2.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是(  )

    A.8 B.﹣8 C.﹣12 D.12
    3.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为(  )

    A.5cm B.12cm C.16cm D.20cm
    4.将一次函数的图象向下平移2个单位后,当时,的取值范围是( )
    A. B. C. D.
    5.计算的结果是( ).
    A. B. C. D.
    6.若与 互为相反数,则x的值是(  )
    A.1 B.2 C.3 D.4
    7.在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是(  )
    A.﹣3 B.0 C. D.﹣1
    8.如图是正方体的表面展开图,则与“前”字相对的字是(  )

    A.认 B.真 C.复 D.习
    9.如图,已知∠1=∠2,要使△ABD≌△ACD,需从下列条件中增加一个,错误的选法是( )

    A.∠ADB=∠ADC B.∠B=∠C C.AB=AC D.DB=DC
    10.在平面直角坐标系中,函数的图象经过( )
    A.第一、二、三象限 B.第一、二、四象限
    C.第一、三、四象限 D.第二、三、四象限
    11.某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同.设现在每天生产x台机器,根据题意可得方程为(  )
    A. B. C. D.
    12.一次函数的图像不经过的象限是:( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在△ABC中,BA=BC=4,∠A=30°,D是AC上一动点,AC的长=_____;BD+DC的最小值是_____.

    14.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则     (用含k的代数式表示).

    15.如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,若⊙O的半径是5,CD=8,则AE=______.

    16.已知x+y=,xy=,则x2y+xy2的值为____.
    17.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等.设甲每小时搬运xkg货物,则可列方程为_____.
    18.如图,点A(m,2),B(5,n)在函数(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为 .

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
    (1)求这条抛物线的表达式;
    (2)求∠ACB的度数;
    (3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.

    20.(6分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.

    21.(6分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA.求证:EF为半圆O的切线;若DA=DF=6,求阴影区域的面积.(结果保留根号和π)

    22.(8分)计算:|﹣1|﹣2sin45°+﹣
    23.(8分)现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树苗6棵,或植C种树苗5棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示.设种植A种树苗的工人为x名,种植B种树苗的工人为y名.求y与x之间的函数关系式;设种植的总成本为w元,
    ①求w与x之间的函数关系式;
    ②若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树苗工人的概率.

    24.(10分)如图,抛物线与x轴交于A,B,与y轴交于点C(0,2),直线经过点A,C.

    (1)求抛物线的解析式;
    (2)点P为直线AC上方抛物线上一动点;
    ①连接PO,交AC于点E,求的最大值;
    ②过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使△PFC中的一个角等于∠CAB的2倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.
    25.(10分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.求m的值;求|m﹣1|+(m+6)0的值.

    26.(12分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.

    (1)求证:AB是⊙O的切线;
    (2)若AC=8,tan∠BAC=,求⊙O的半径.
    27.(12分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    过A作AD⊥BF于D,根据45°角的三角函数值可求出AB的长度,根据含30°角的直角三角形的性质求出斜边AC的长即可.
    【详解】
    如图,过A作AD⊥BF于D,
    ∵∠ABD=45°,AD=12,
    ∴=12,
    又∵Rt△ABC中,∠C=30°,
    ∴AC=2AB=24,
    故选:D.

    【点睛】
    本题考查解直角三角形,在直角三角形中,30°角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.
    2、D
    【解析】
    根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.
    【详解】
    ∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.
    故选D.
    【点睛】
    本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.
    3、D
    【解析】
    解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.
    【详解】
    延长AB、DC相交于F,则BFC构成直角三角形,

    运用勾股定理得:
    BC2=(15-3)2+(1-4)2=122+162=400,
    所以BC=1.
    则剪去的直角三角形的斜边长为1cm.
    故选D.
    【点睛】
    本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.
    4、C
    【解析】
    直接利用一次函数平移规律,即k不变,进而利用一次函数图象的性质得出答案.
    【详解】
    将一次函数向下平移2个单位后,得:

    当时,则:

    解得:,
    当时,,
    故选C.
    【点睛】
    本题主要考查了一次函数平移,解一元一次不等式,正确利用一次函数图象上点的坐标性质得出是解题关键.
    5、D
    【解析】
    根据同底数幂的乘除法运算进行计算.
    【详解】
    3x2y2×x3y2÷xy3=6x5y4÷xy3=6x4y.故答案选D.
    【点睛】
    本题主要考查同底数幂的乘除运算,解题的关键是知道:同底数幂相乘,底数不变,指数相加.
    6、D
    【解析】
    由题意得+=0,
    去分母3x+4(1-x)=0,
    解得x=4.故选D.
    7、B
    【解析】
    |﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,
    ∵3>2>>1>0,
    ∴绝对值最小的数是0,
    故选:B.
    8、B
    【解析】
    分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.
    详解:由图形可知,与“前”字相对的字是“真”.
    故选B.
    点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.
    9、D
    【解析】
    由全等三角形的判定方法ASA证出△ABD≌△ACD,得出A正确;由全等三角形的判定方法AAS证出△ABD≌△ACD,得出B正确;由全等三角形的判定方法SAS证出△ABD≌△ACD,得出C正确.由全等三角形的判定方法得出D不正确;
    【详解】
    A正确;理由:
    在△ABD和△ACD中,
    ∵∠1=∠2,AD=AD,∠ADB=∠ADC,
    ∴△ABD≌△ACD(ASA);
    B正确;理由:
    在△ABD和△ACD中,
    ∵∠1=∠2,∠B=∠C,AD=AD
    ∴△ABD≌△ACD(AAS);
    C正确;理由:
    在△ABD和△ACD中,
    ∵AB=AC,∠1=∠2,AD=AD,
    ∴△ABD≌△ACD(SAS);
    D不正确,由这些条件不能判定三角形全等;
    故选:D.
    【点睛】
    本题考查了全等三角形的判定方法;三角形全等的判定是中考的热点,熟练掌握全等三角形的判定方法是解决问题的关键.
    10、A
    【解析】
    【分析】一次函数y=kx+b的图象经过第几象限,取决于k和b.当k>0,b>O时,图象过一、二、三象限,据此作答即可.
    【详解】∵一次函数y=3x+1的k=3>0,b=1>0,
    ∴图象过第一、二、三象限,
    故选A.
    【点睛】一次函数y=kx+b的图象经过第几象限,取决于x的系数和常数项.
    11、A
    【解析】
    根据现在生产500台机器所需时间与原计划生产350台机器所需时间相同,所以可得等量关系为:现在生产500台机器所需时间=原计划生产350台机器所需时间.
    【详解】
    现在每天生产x台机器,则原计划每天生产(x﹣30)台机器.
    依题意得:,
    故选A.
    【点睛】
    本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
    12、C
    【解析】
    试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=<0与b=1>0,因此不经过第三象限.
    答案为C
    考点:一次函数的图像

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、(Ⅰ)AC=4 (Ⅱ)4,2.
    【解析】
    (Ⅰ)如图,过B作BE⊥AC于E,根据等腰三角形的性质和解直角三角形即可得到结论;
    (Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+DC的值最小,解直角三角形即可得到结论.
    【详解】
    解:(Ⅰ)如图,过B作BE⊥AC于E,
    ∵BA=BC=4,
    ∴AE=CE,
    ∵∠A=30°,
    ∴AE=AB=2,
    ∴AC=2AE=4;
    (Ⅱ)如图,作BC的垂直平分线交AC于D,
    则BD=CD,此时BD+DC的值最小,
    ∵BF=CF=2,
    ∴BD=CD= =,
    ∴BD+DC的最小值=2,
    故答案为:4,2.

    【点睛】
    本题考查了等腰三角形的性质,线段垂直平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.
    14、。
    【解析】
    试题分析:如图,连接EG,

    ∵,∴设,则。
    ∵点E是边CD的中点,∴。
    ∵△ADE沿AE折叠后得到△AFE,
    ∴。
    易证△EFG≌△ECG(HL),∴。∴。
    ∴在Rt△ABG中,由勾股定理得: ,即。
    ∴。
    ∴(只取正值)。
    ∴。
    15、2
    【解析】
    连接OC,由垂径定理知,点E是CD的中点,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可
    【详解】
    设AE为x,
    连接OC,

    ∵AB是⊙O的直径,弦CD⊥AB于点E,CD=8,
    ∴∠CEO=90°,CE=DE=4,
    由勾股定理得:OC2=CE2+OE2,
    52=42+(5-x)2,
    解得:x=2,
    则AE是2,
    故答案为:2
    【点睛】
    此题考查垂径定理和勾股定理,,解题的关键是利用勾股定理求关于半径的方程.
    16、3
    【解析】
    分析:因式分解,把已知整体代入求解.
    详解:x2y+xy2=xy(x+y)=3.
    点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).
    (2)公式法:完全平方公式,平方差公式.
    (3)十字相乘法.
    因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.
    17、=
    【解析】
    设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.
    【详解】
    解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,
    由题意得:=.
    故答案是:=.
    【点睛】
    本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.
    18、2.
    【解析】
    试题分析:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=2,∴A(2,2),∴k=2×2=2.故答案为2.
    考点:2.反比例函数系数k的几何意义;2.平移的性质;3.综合题.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)y=﹣2x2+x+3;(2)∠ACB=41°;(3)D(,).
    【解析】
    试题分析:把点的坐标代入即可求得抛物线的解析式.
    作BH⊥AC于点H,求出的长度,即可求出∠ACB的度数.
    延长CD交x轴于点G,△DCE∽△AOC,只可能∠CAO=∠DCE.求出直线的方程,和抛物线的方程联立即可求得点的坐标.
    试题解析:(1)由题意,得
    解得.
    ∴这条抛物线的表达式为.
    (2)作BH⊥AC于点H,
    ∵A点坐标是(-1,0),C点坐标是(0,3),B点坐标是(,0),
    ∴AC=,AB=,OC=3,BC=.
    ∵,即∠BAD=,
    ∴.
    Rt△ BCH中,,BC=,∠BHC=90º,
    ∴.
    又∵∠ACB是锐角,∴.
    (3)延长CD交x轴于点G,
    ∵Rt△ AOC中,AO=1,AC=,
    ∴.
    ∵△DCE∽△AOC,∴只可能∠CAO=∠DCE.
    ∴AG = CG.
    ∴.
    ∴AG=1.∴G点坐标是(4,0).
    ∵点C坐标是(0,3),∴.
    ∴ 解得,(舍).
    ∴点D坐标是
    20、∠DAC=20°.
    【解析】
    根据角平分线的定义可得∠ABC=2∠ABE,再根据直角三角形两锐角互余求出∠BAD,然后根据∠DAC=∠BAC﹣∠BAD计算即可得解.
    【详解】
    ∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°.
    ∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.
    【点睛】
    本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.
    21、(1)证明见解析 (2)﹣6π
    【解析】
    (1)直接利用切线的判定方法结合圆心角定理分析得出OD⊥EF,即可得出答案;
    (2)直接利用得出S△ACD=S△COD,再利用S阴影=S△AED﹣S扇形COD,求出答案.
    【详解】
    (1)证明:连接OD,
    ∵D为弧BC的中点,
    ∴∠CAD=∠BAD,
    ∵OA=OD,
    ∴∠BAD=∠ADO,
    ∴∠CAD=∠ADO,
    ∵DE⊥AC,
    ∴∠E=90°,
    ∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,
    ∴OD⊥EF,
    ∴EF为半圆O的切线;
    (2)解:连接OC与CD,
    ∵DA=DF,
    ∴∠BAD=∠F,
    ∴∠BAD=∠F=∠CAD,
    又∵∠BAD+∠CAD+∠F=90°,
    ∴∠F=30°,∠BAC=60°,
    ∵OC=OA,
    ∴△AOC为等边三角形,
    ∴∠AOC=60°,∠COB=120°,
    ∵OD⊥EF,∠F=30°,
    ∴∠DOF=60°,
    在Rt△ODF中,DF=6,
    ∴OD=DF•tan30°=6,
    在Rt△AED中,DA=6,∠CAD=30°,
    ∴DE=DA•sin30°=3,EA=DA•cos30°=9,
    ∵∠COD=180°﹣∠AOC﹣∠DOF=60°,
    由CO=DO,
    ∴△COD是等边三角形,
    ∴∠OCD=60°,
    ∴∠DCO=∠AOC=60°,
    ∴CD∥AB,
    故S△ACD=S△COD,
    ∴S阴影=S△AED﹣S扇形COD==.

    【点睛】
    此题主要考查了切线的判定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出S△ACD=S△COD是解题关键.
    22、﹣1
    【解析】
    直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案.
    【详解】
    原式=(﹣1)﹣2×+2﹣4
    =﹣1﹣+2﹣4
    =﹣1.
    【点睛】
    此题主要考查了实数运算,正确化简各数是解题关键.
    23、(1);(2)①;②
    【解析】
    (1)先求出种植C种树苗的人数,根据现种植A、B、C三种树苗一共480棵,可以列出等量关系,解出y与x之间的关系;
    (2)①分别求出种植A,B,C三种树苗的成本,然后相加即可;
    ②求出种植C种树苗工人的人数,然后用种植C种树苗工人的人数÷总人数即可求出概率.
    【详解】
    解:(1)设种植A种树苗的工人为x名,种植B种树苗的工人为y名,则种植C种树苗的人数为(80-x-y)人,
    根据题意,得:8x+6y+5(80-x-y)=480,
    整理,得:y=-3x+80;
    (2)①w=15×8x+12×6y+8×5(80-x-y)=80x+32y+3200,
    把y=-3x+80代入,得:w=-16x+5760,
    ②种植的总成本为5600元时,w=-16x+5760=5600,
    解得x=10,y=-3×10+80=50,
    即种植A种树苗的工人为10名,种植B种树苗的工人为50名,种植B种树苗的工人为:80-10-50=20名.
    采访到种植C种树苗工人的概率为:=.
    【点睛】
    本题主要考查了一次函数的实际问题,以及概率的求法,能够将实际问题转化成数学模型是解答此题的关键.
    24、(1);(2)①有最大值1;②(2,3)或(,)
    【解析】
    (1)根据自变量与函数值的对应关系,可得A,C点坐标,根据代定系数法,可得函数解析式;
    (2)①根据相似三角形的判定与性质,可得,根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;
    ②根据勾股定理的逆定理得到△ABC是以∠ACB为直角的直角三角形,取AB的中点D,求得D(,0),得到DA=DC=DB=,过P作x轴的平行线交y轴于R,交AC于G,情况一:如图,∠PCF=2∠BAC=∠DGC+∠CDG,情况二,∠FPC=2∠BAC,解直角三角形即可得到结论.
    【详解】
    (1)当x=0时,y=2,即C(0,2),
    当y=0时,x=4,即A(4,0),
    将A,C点坐标代入函数解析式,得

    解得,
    抛物线的解析是为;
       (2)过点P向x轴做垂线,交直线AC于点M,交x轴于点N

    ∵直线PN∥y轴,
    ∴△PEM~△OEC,

    把x=0代入y=-x+2,得y=2,即OC=2,
    设点P(x,-x2+x+2),则点M(x,-x+2),
    ∴PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,
    ∴=,
    ∵0<x<4,∴当x=2时,=有最大值1.
    ②∵A(4,0),B(-1,0),C(0,2),
    ∴AC=2,BC=,AB=5,
    ∴AC2+BC2=AB2,
    ∴△ABC是以∠ACB为直角的直角三角形,取AB的中点D,
    ∴D(,0),
    ∴DA=DC=DB=,
    ∴∠CDO=2∠BAC,
    ∴tan∠CDO=tan(2∠BAC)=,
    过P作x轴的平行线交y轴于R,交AC的延长线于G,
    情况一:如图

    ∴∠PCF=2∠BAC=∠PGC+∠CPG,
    ∴∠CPG=∠BAC,
    ∴tan∠CPG=tan∠BAC=,
    即,
    令P(a,-a2+a+2),
    ∴PR=a,RC=-a2+a,
    ∴,
    ∴a1=0(舍去),a2=2,
    ∴xP=2,-a2+a+2=3,P(2,3)
    情况二,∴∠FPC=2∠BAC,
    ∴tan∠FPC=,
    设FC=4k,
    ∴PF=3k,PC=5k,
    ∵tan∠PGC=,
    ∴FG=6k,
    ∴CG=2k,PG=3k,
    ∴RC=k,RG=k,PR=3k-k=k,
    ∴,
    ∴a1=0(舍去),a2=,
    xP=,-a2+a+2=,即P(,),
    综上所述:P点坐标是(2,3)或(,).
    【点睛】
    本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出,又利用了二次函数的性质;解(3)的关键是利用解直角三角形,要分类讨论,以防遗漏.
    25、(1)2- ;(2)
    【解析】
    试题分析: 点表示 向右直爬2个单位到达点,点表示的数为
    把的值代入,对式子进行化简即可.
    试题解析: 由题意点和点的距离为,其点的坐标为 因此点坐标
    把的值代入得:



    26、 (1)见解析;(2).
    【解析】
    分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;
    (2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.
    详解:(1)连结OP、OA,OP交AD于E,如图,
    ∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.
    ∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.
    ∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,
    ∴直线AB与⊙O相切;
    (2)连结BD,交AC于点F,如图,
    ∵四边形ABCD为菱形,∴DB与AC互相垂直平分.
    ∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,
    ∴DF=2,∴AD==2,∴AE=.
    在Rt△PAE中,tan∠1==,∴PE=.
    设⊙O的半径为R,则OE=R﹣,OA=R.
    在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,
    ∴R=,即⊙O的半径为.

    点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和锐角三角函数以及勾股定理.
    27、路灯高CD为5.1米.
    【解析】
    根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.
    【详解】
    设CD长为x米,
    ∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,
    ∴MA∥CD∥BN,
    ∴EC=CD=x米,
    ∴△ABN∽△ACD,
    ∴=,即,
    解得:x=5.1.
    经检验,x=5.1是原方程的解,
    ∴路灯高CD为5.1米.
    【点睛】
    本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.

    相关试卷

    湖北省丹江口市重点达标名校2022年中考考前最后一卷数学试卷含解析:

    这是一份湖北省丹江口市重点达标名校2022年中考考前最后一卷数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,如图,在中,,,,则等于等内容,欢迎下载使用。

    湖北省宜昌市长阳县重点达标名校2021-2022学年中考数学模试卷含解析:

    这是一份湖北省宜昌市长阳县重点达标名校2021-2022学年中考数学模试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列几何体中三视图完全相同的是等内容,欢迎下载使用。

    2022年安徽省和县重点达标名校中考数学模试卷含解析:

    这是一份2022年安徽省和县重点达标名校中考数学模试卷含解析,共17页。试卷主要包含了答题时请按要求用笔,当函数y=等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map