湖北省黄冈市季黄梅县重点达标名校2021-2022学年中考猜题数学试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.在平面直角坐标系中,位于第二象限的点是( )
A.(﹣1,0) B.(﹣2,﹣3) C.(2,﹣1) D.(﹣3,1)
2.关于x的一元二次方程x2-4x+k=0有两个相等的实数根,则k的值是( )
A.2 B.-2 C.4 D.-4
3.计算(﹣3)﹣(﹣6)的结果等于( )
A.3 B.﹣3 C.9 D.18
4.如图,已知▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S△AFE:S四边形FCDE为( )
A.1:3 B.1:4 C.1:5 D.1:6
5.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )
A.最低温度是32℃ B.众数是35℃ C.中位数是34℃ D.平均数是33℃
6.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x本画册,列方程正确的是( )
A. B.
C. D.
7.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:
x
…
–2
–1
0
1
2
…
y
…
0
4
6
6
4
…
从上表可知,下列说法错误的是
A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)
C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的
8.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是( )
A.0.2 B.0.25 C.0.4 D.0.5
9.已知反比例函数y=的图象在一、三象限,那么直线y=kx﹣k不经过第( )象限.
A.一 B.二 C.三 D.四
10.如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为( )
A. B. C. D.1
二、填空题(共7小题,每小题3分,满分21分)
11.使分式的值为0,这时x=_____.
12.一次函数y=kx+b(k≠0)的图象如图所示,那么不等式kx+b<0的解集是_____.
13.如图,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合连接CD,则∠BDC的度数为_____度.
14.如图,利用图形面积的不同表示方法,能够得到的代数恒等式是____________________(写出一个即可).
15.在平面直角坐标系xOy中,点A(4,3)为⊙O上一点,B为⊙O内一点,请写出一个符合条件要求的点B的坐标______.
16.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=_____
17.如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是____.
三、解答题(共7小题,满分69分)
18.(10分)如图,一次函数y=k1x+b(k1≠0)与反比例函数的图象交于点A(-1,2),B(m,-1).求一次函数与反比例函数的解析式;在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.
19.(5分)某公司为了扩大经营,决定购进6台机器用于生产某活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.
甲
乙
价格(万元/台)
7
5
每台日产量(个)
100
60
(1)按该公司要求可以有几种购买方案?如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?
20.(8分)如图,在中,AB=AC,,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.
(1)∠EDB=_____(用含的式子表示)
(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转,与AC边交于点N.
①根据条件补全图形;
②写出DM与DN的数量关系并证明;
③用等式表示线段BM、CN与BC之间的数量关系,(用含的锐角三角函数表示)并写出解题思路.
21.(10分)如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.
(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);
(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;
(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)
22.(10分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.
(1)请画出树状图并写出所有可能得到的三位数;
(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.
23.(12分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星卫星发射升空,卫星进入预定轨道.如图,火星从地面处发射,当火箭达到点时,从位于地面雷达站处测得的距离是,仰角为;1秒后火箭到达点,测得的仰角为.(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)
(Ⅰ)求发射台与雷达站之间的距离;
(Ⅱ)求这枚火箭从到的平均速度是多少(结果精确到0.01)?
24.(14分)解不等式组,
请结合题意填空,完成本题的解答.
(1)解不等式①,得_____;
(2)解不等式②,得_____;
(3)把不等式①和②的解集在数轴上表示出来;
(4)原不等式组的解集为_____.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
点在第二象限的条件是:横坐标是负数,纵坐标是正数,直接得出答案即可.
【详解】
根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有C(﹣3,1)符合,故选:D.
【点睛】
本题考查点的坐标的性质,解题的关键是掌握点的坐标的性质.
2、C
【解析】
对于一元二次方程a+bx+c=0,当Δ=-4ac=0时,方程有两个相等的实数根.
即16-4k=0,解得:k=4.
考点:一元二次方程根的判别式
3、A
【解析】
原式=−3+6=3,
故选A
4、C
【解析】
根据AE∥BC,E为AD中点,找到AF与FC的比,则可知△AEF面积与△FCE面积的比,同时因为△DEC面积=△AEC面积,则可知四边形FCDE面积与△AEF面积之间的关系.
【详解】
解:连接CE,∵AE∥BC,E为AD中点,
∴ .
∴△FEC面积是△AEF面积的2倍.
设△AEF面积为x,则△AEC面积为3x,
∵E为AD中点,
∴△DEC面积=△AEC面积=3x.
∴四边形FCDE面积为1x,
所以S△AFE:S四边形FCDE为1:1.
故选:C.
【点睛】
本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系.
5、D
【解析】
分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.
详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是=33℃.
故选D.
点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.
6、A
【解析】
分析:由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.
详解:设他上月买了x本笔记本,则这次买了(x+20)本,
根据题意得:.
故选A.
点睛:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可.
7、C
【解析】
当x=-2时,y=0,
∴抛物线过(-2,0),
∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;
当x=0时,y=6,
∴抛物线与y轴的交点坐标为(0,6),故B正确;
当x=0和x=1时,y=6,
∴对称轴为x=,故C错误;
当x<时,y随x的增大而增大,
∴抛物线在对称轴左侧部分是上升的,故D正确;
故选C.
8、B
【解析】
设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.
【详解】
解:设大正方形边长为2,则小正方形边长为1,
因为面积比是相似比的平方,
所以大正方形面积为4,小正方形面积为1,
则针孔扎到小正方形(阴影部分)的概率是;
故选:B.
【点睛】
本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
9、B
【解析】
根据反比例函数的性质得k>0,然后根据一次函数的进行判断直线y=kx-k不经过的象限.
【详解】
∵反比例函数y=的图象在一、三象限,
∴k>0,
∴直线y=kx﹣k经过第一、三、四象限,即不经过第二象限.
故选:B.
【点睛】
考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数与一次函数的性质.
10、D
【解析】
试题分析:∵△ABC为等边三角形,BP平分∠ABC,∴∠PBC=∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC•tan∠PBC==1,∴点P到边AB所在直线的距离为1,故选D.
考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.
答案为1.
考点:分式方程的解法
12、x>﹣1.
【解析】
一次函数y=kx+b的图象在x轴下方时,y<0,再根据图象写出解集即可.
【详解】
当不等式kx+b<0时,一次函数y=kx+b的图象在x轴下方,因此x>﹣1.
故答案为:x>﹣1.
【点睛】
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k≠0)在x轴上(或下)方部分所有的点的横坐标所构成的集合.
13、1
【解析】
根据△EBD由△ABC旋转而成,得到△ABC≌△EBD,则BC=BD,∠EBD=∠ABC=30°,则有∠BDC=∠BCD,∠DBC=180﹣30°=10°,化简计算即可得出.
【详解】
解:∵△EBD由△ABC旋转而成,
∴△ABC≌△EBD,
∴BC=BD,∠EBD=∠ABC=30°,
∴∠BDC=∠BCD,∠DBC=180﹣30°=10°,
∴;
故答案为:1.
【点睛】
此题考查旋转的性质,即图形旋转后与原图形全等.
14、(a+b)2=a2+2ab+b2
【解析】
完全平方公式的几何背景,即乘法公式的几何验证.此类题型可从整体和部分两个方面分析问题.本题从整体来看,整个图形为一个正方形,找到边长,表示出面积,从部分来看,该图形的面积可用两个小正方形的面积加上2个矩形的面积表示,从不同角度思考,但是同一图形,所以它们面积相等,列出等式.
【详解】
解:
,
【点睛】
此题考查了完全平方公式的几何意义,从不同角度思考,用不同的方法表示相应的面积是解题的关键.
15、(2,2).
【解析】
连结OA,根据勾股定理可求OA,再根据点与圆的位置关系可得一个符合要求的点B的坐标.
【详解】
如图,连结OA,
OA==5,
∵B为⊙O内一点,
∴符合要求的点B的坐标(2,2)答案不唯一.
故答案为:(2,2).
【点睛】
考查了点与圆的位置关系,坐标与图形性质,关键是根据勾股定理得到OA的长.
16、.
【解析】
解:令AE=4x,BE=3x,
∴AB=7x.
∵四边形ABCD为平行四边形,
∴CD=AB=7x,CD∥AB,
∴△BEF∽△DCF.
∴,
∴DF=
【点睛】
本题考查平行四边形的性质及相似三角形的判定与性质,掌握定理正确推理论证是本题的解题关键.
17、1
【解析】
如图作点D关于BC的对称点D′,连接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出当E、F、P、D′共线时,PF+PD′定值最小,最小值=ED′﹣EF.
【详解】
如图作点D关于BC的对称点D′,连接PD′,ED′,
在Rt△EDD′中,∵DE=6,DD′=1,
∴ED′==10,
∵DP=PD′,
∴PD+PF=PD′+PF,
∵EF=EA=2是定值,
∴当E、F、P、D′共线时,PF+PD′定值最小,最小值=10﹣2=1,
∴PF+PD的最小值为1,
故答案为1.
【点睛】
本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.
三、解答题(共7小题,满分69分)
18、(1)反比例函数的解析式为;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
【解析】
(1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.
(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.
【详解】
(1)把A(-1,2)代入,得到k2=-2,
∴反比例函数的解析式为.
∵B(m,-1)在上,∴m=2,
由题意,解得:,∴一次函数的解析式为y=-x+1.
(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
【点睛】
本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论.
19、(1)有3种购买方案①购乙6台,②购甲1台,购乙5台,③购甲2台,购乙4台(2)购买甲种机器1台,购买乙种机器5台,
【解析】
(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x的不等式,就可以求出x的范围.
(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.
【详解】
解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台
依题意,得7x+5(6-x)≤34
解这个不等式,得x≤2,即x可取0,1,2三个值.
∴该公司按要求可以有以下三种购买方案:
方案一:不购买甲种机器,购买乙种机器6台.
方案二:购买甲种机器l1台,购买乙种机器5台.
方案三:购买甲种机器2台,购买乙种机器4台
(2)根据题意,100x+60(6-x)≥380
解之得x>
由(1)得x≤2,即≤x≤2.
∴x可取1,2俩值.
即有以下两种购买方案:
购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;
购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元.
∴为了节约资金应选择购买甲种机器1台,购买乙种机器5台,.
【点睛】
解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案.
20、(1);(2)(2)①见解析;②DM=DN,理由见解析;③数量关系:
【解析】
(1)先利用等腰三角形的性质和三角形内角和得到∠B=∠C=90°﹣α,然后利用互余可得到∠EDB=α;
(2)①如图,利用∠EDF=180°﹣2α画图;
②先利用等腰三角形的性质得到DA平分∠BAC,再根据角平分线性质得到DE=DF,根据四边形内角和得到∠EDF=180°﹣2α,所以∠MDE=∠NDF,然后证明△MDE≌△NDF得到DM=DN;
③先由△MDE≌△NDF可得EM=FN,再证明△BDE≌△CDF得BE=CF,利用等量代换得到BM+CN=2BE,然后根据正弦定义得到BE=BDsinα,从而有BM+CN=BC•sinα.
【详解】
(1)∵AB=AC,∴∠B=∠C(180°﹣∠A)=90°﹣α.
∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣∠B=90°﹣(90°﹣α)=α.
故答案为:α;
(2)①如图:
②DM=DN.理由如下:∵AB=AC,BD=DC,∴DA平分∠BAC.
∵DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∠MED=∠NFD=90°.
∵∠A=2α,∴∠EDF=180°﹣2α.
∵∠MDN=180°﹣2α,∴∠MDE=∠NDF.
在△MDE和△NDF中,∵,∴△MDE≌△NDF,∴DM=DN;
③数量关系:BM+CN=BC•sinα.
证明思路为:先由△MDE≌△NDF可得EM=FN,再证明△BDE≌△CDF得BE=CF,所以BM+CN=BE+EM+CF﹣FN=2BE,接着在Rt△BDE可得BE=BDsinα,从而有BM+CN=BC•sinα.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.
21、(1)作图见解析;(2)EB是平分∠AEC,理由见解析; (3)△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.
【解析】
【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;
(2)先求出DE=CE=1,进而判断出△ADE≌△BCE,得出∠AED=∠BEC,再用锐角三角函数求出∠AED,即可得出结论;
(3)先判断出△AEP≌△FBP,即可得出结论.
【详解】(1)依题意作出图形如图①所示;
(2)EB是平分∠AEC,理由:
∵四边形ABCD是矩形,
∴∠C=∠D=90°,CD=AB=2,BC=AD=,
∵点E是CD的中点,
∴DE=CE=CD=1,
在△ADE和△BCE中,,
∴△ADE≌△BCE,
∴∠AED=∠BEC,
在Rt△ADE中,AD=,DE=1,
∴tan∠AED==,
∴∠AED=60°,
∴∠BCE=∠AED=60°,
∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,
∴BE平分∠AEC;
(3)∵BP=2CP,BC==,
∴CP=,BP=,
在Rt△CEP中,tan∠CEP==,
∴∠CEP=30°,
∴∠BEP=30°,
∴∠AEP=90°,
∵CD∥AB,
∴∠F=∠CEP=30°,
在Rt△ABP中,tan∠BAP==,
∴∠PAB=30°,
∴∠EAP=30°=∠F=∠PAB,
∵CB⊥AF,
∴AP=FP,
∴△AEP≌△FBP,
∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,
变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.
【点睛】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP≌△△FBP是解本题的关键.
22、(1)见解析(2)不公平。理由见解析
【解析】
解:(1)画树状图得:
所有得到的三位数有24个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,,413,421,423,431,432。
(2)这个游戏不公平。理由如下:
∵组成的三位数中是“伞数”的有:132,142,143,231,241,243,341,342,共有8个,
∴甲胜的概率为,乙胜的概率为。
∵甲胜的概率≠乙胜的概率,∴这个游戏不公平。
(1)首先根据题意画出树状图,由树状图即可求得所有可能得到的三位数。
(2)由(1),可求得甲胜和乙胜的概率,比较是否相等即可得到答案。
23、 (Ⅰ)发射台与雷达站之间的距离约为;(Ⅱ)这枚火箭从到的平均速度大约是.
【解析】
(Ⅰ)在Rt△ACD中,根据锐角三角函数的定义,利用∠ADC的余弦值解直角三角形即可;(Ⅱ)在Rt△BCD和Rt△ACD中,利用∠BDC的正切值求出BC的长,利用∠ADC的正弦值求出AC的长,进而可得AB的长,即可得答案.
【详解】
(Ⅰ)在中,,≈0.74,
∴.
答:发射台与雷达站之间的距离约为.
(Ⅱ)在中,,
∴.
∵在中,,
∴.
∴.
答:这枚火箭从到的平均速度大约是.
【点睛】
本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.
24、(1)x>1;(1)x≤1;(3)答案见解析;(4)1<x≤1.
【解析】
根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.
【详解】
解:(1)解不等式①,得x>1;
(1)解不等式②,得 x≤1;
(3)把不等式①和②的解集在数轴上表示出来:
(4)原不等式组的解集为:1<x≤1.
【点睛】
本题考查了一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.
新疆乌鲁木齐天山区重点达标名校2021-2022学年中考猜题数学试卷含解析: 这是一份新疆乌鲁木齐天山区重点达标名校2021-2022学年中考猜题数学试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,计算4+,下列图形中,主视图为①的是,已知,下列说法中,不正确的是等内容,欢迎下载使用。
河北省黄骅市重点达标名校2021-2022学年中考猜题数学试卷含解析: 这是一份河北省黄骅市重点达标名校2021-2022学年中考猜题数学试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,计算,sin45°的值等于等内容,欢迎下载使用。
安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析: 这是一份安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析,共24页。试卷主要包含了答题时请按要求用笔,已知二次函数y=,在一组数据等内容,欢迎下载使用。