所属成套资源:北师大版九年级下册全套同步测试卷
初中数学第二章 二次函数4 二次函数的应用精品当堂达标检测题
展开
这是一份初中数学第二章 二次函数4 二次函数的应用精品当堂达标检测题,文件包含答案docx、原卷docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
北师大版 九下 第2章 2.4(1)二次函数应用图形、拱桥、运动问题一,选择题(30分)1、.如图,用一段长为18米的篱笆围成一个一边靠墙(墙长不限)的矩形花园,设该矩形花园的一边长为,另一边的长为,矩形的面积为.当在一定范围内变化时,和都随的变化而变化,那么与.与满足的函数关系分别是( ) A.一次函数关系,二次函数关系 B.反比例函数关系,二次函数关系C.一次函数关系,反比例函数关系 D.反比例函数关系,一次函数关系 2、如图是抛物线形的拱桥,当水面宽4m时,顶点离水面2m,当水面宽度增加到6m时,水面下降( )A.1m B.1.5m C.2.5m D.2m3.如图,某拱形门建筑的形状时抛物线,拱形门地面上两点的跨度为192米,高度也为192米,若取拱形门地面上两点的连线作x轴,可用函数表示,则a的值为( )A. B. C. D.4.如图,在长为20m、宽为14m的矩形花圃里建有等宽的十字形小径,若小径的宽不超过1m,则花圃中的阴影部分的面积有( ) A.最小值247 B.最小值266 C.最大值247 D.最大值2665.如图,是等腰直角三角形,,,为上的动点,交折线于点,设,的面积为,则与的函数图象正确的是( )A. B.C. D.6.如图1,等边△ABC中,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,如图2是y关于x的函数图象,则等边△ABC的边长为( )A.2 B.2 C.4 D.37.如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PO,设运动时间为xs,△APQ的面积为ycm2,则下列图像中能大致表示y与x的函数关系的是( )A. B.C. D.8.如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高OD为14的奖杯,杯体轴截面ABC是抛物线的一部分,则杯口的口径AC为( )A.7 B.8 C.9 D.109.两个正方形的周长和是10,如果其中一个正方形的边长为,则这两个正方形的面积的和S关于的函数关系式为( )A. B.C. D.10.如图,抛物线y=ax2+bx+c的顶点M在矩形ABCD区域内(含边界),且该抛物线经过原点O(0,0),则a的取值范围是( )A.-2≤a≤-1 B. C. D.二、填空题(共24分)11.如图用一段长为16m的篱笆围成一个一边靠墙的矩形围栏(墙长9m),则这个围栏的最大面积为________ .12.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,以B为原点、AB所在水平线为x轴建立坐标系,拱桥对应抛物线的解析式为__________________.13.如图,在平面直角坐标系中,点A(4,8)在抛物线上,过点A作y轴的垂线,交抛物线于另一点B,点C、D在线段AB上,分别过点C、D作x轴的垂线交抛物线于E、F两点.当四边形CDFE为正方形时,线段CD的长为___________.14.如图,在一块等腰直角三角形ABC的铁皮上截取一块矩形铁皮,要求截得的矩形的边EF在的边BC上,顶点D、G分别在边AB、AC上.已知厘米,设DG的长为x厘米,矩形DEFG的面积为y平方厘米,那么y关于x的函数解析式为________________.(不要求写出定义域)15.如图,矩形中,,,点从点出发,沿边向点以1cm/s的速度移动;点从点出发,沿边向点以2cm/s的速度移动.,同时出发,分别到,后停止移动,则的最小面积是______.16、如图,正方形ABCD的边AB在x轴上,点A(-2,0)点B(1,0),抛物线y=x2-4x+m与正方形有两个交点时,则m的取值范围是_______. 三、解答题:(66分)17.(6分)某公路有一个抛物线形状的隧道ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=﹣x2+c且过顶点C(0,5).(长度单位:m)(1)直接写出c= ;(2)求该隧道截面的最大跨度(即AB的长度)是多少米?(3)该隧道为双向车道,现有一辆运货卡车高4米、宽3米,问这辆卡车能否顺利通过隧道?请说明理由. 18、(8分)如图1,是抛物线形的拱桥,当拱顶高水面2米时,水面宽4米.如图建立平面直角坐标系,解答下列问题: (1)如图2,求该抛物线的函数解析式.(2)当水面AB下降1米,到CD处时,水面宽度增加多少米?(保留根号)(3)当水面AB上升1米时,水面宽度减少多少米?(保留根号) 19、(8分)如图,一座温室实验室的横截面由抛物线和矩形组成,矩形的长是16m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=-x2+bx+c表示,CD为一排平行于地面的加湿管.(1)求抛物线的函数关系式,并计算出拱顶到地面的距离.(2)若加湿管的长度至少是12m,加湿管与拱顶的距离至少是多少米?(3)若在加湿管上方还要再安装一排恒温管(两排管道互相平行),且恒温管与加湿管相距1.25m,恒温管的长度至少是多少米?
20、(10分).如图,隧道的截面由抛物线和矩形构成,矩形的长为,宽为,以所在的直线为轴,线段的中垂线为轴,建立平面直角坐标系.轴是抛物线的对称轴,最高点到地面距离为4米.(1)求出抛物线的解析式.(2)在距离地面米高处,隧道的宽度是多少?(3)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高3.6米,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论. 21、(10分)如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为2cm/s,点Q的速度为1cm/s,点P移动到B点后停止,点Q也随之停止运动,设P、Q从点A、B同时出发,运动时间为ts,四边形APQC的面积是S(1)试写出S与t之间的函数关系式,并确定自变量的取值范围;(2)若S是21cm2时,确定t值;(3)t为何值时,S有最大(或最小)值,求出这个最值. 22、(12分)某公司有一个抛物线形蔬菜大棚,将其截面放在如图所示的直角坐标系中,抛物线可以用函数y=ax2+bx来表示.已知大棚在地面上的宽度OA为4米,距离O点1米处的棚高BC为米.(1)求该抛物线的解析式;(2)求蔬菜大棚离地面的最大高度是多少米?(3)为了扩大经营规模,公司决定将原来的蔬菜大棚进行改造,新建的大棚与原来大棚的形状保持不变,但使地面的宽度增加到6米.求身高为1.68米的工作人员在不弯腰的情况下,在大棚内横向活动的范围是多少米?
23.(12分)如图,在Rt△ABC中,∠C=90°,AC=BC,AB=4cm,线段AB上一动点D,以1cm/s的速度从点A出发向终点B运动.过点D作DE⊥AB,交折线AC-CB于点E,以DE为一边,在DE右侧作正方形DEFC.设运动时间为x(s)(0<x<4).正方形DEFG与△ABC重叠部分面积为y(cm2).(1)当x= s时,点F在BC上;(2)求y关于x的函数解析式,并写出自变量x的取值范围.
相关试卷
这是一份北师大版 七上 期中测试卷(第1章--第3章)C卷(原卷+解析),文件包含原卷docx、C卷docx等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。
这是一份北师大版 数学八上 期中测试卷(第1--第4章)A卷(原卷+解析),文件包含答案docx、A卷docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
这是一份北师大版 七上 期中测试卷(第1章-第3章 )A j卷(原卷+解析),文件包含答案docx、A卷docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。