所属成套资源:2023届高考数学新人教B版一轮复习作业(答案有详细解析)(70份)
2023届高考数学一轮复习作业抛物线新人教B版(答案有详细解析)
展开
这是一份2023届高考数学一轮复习作业抛物线新人教B版(答案有详细解析),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
抛物线一、选择题1.(2021·新高考Ⅱ卷)若抛物线y2=2px(p>0)的焦点到直线y=x+1的距离为,则p=( )A.1 B.2 C.2 D.4B [抛物线y2=2px(p>0)的焦点坐标为,它到直线y=x+1的距离为d==⇒p=2.故选B.]2.(2021·陕西咸阳高三模拟)点M到点F(-4,0) 的距离比它到直线l:x-6=0的距离小2,则点M的轨迹方程为( )A.y2=16x B.y2=-16xC.y2=24x D.y2=-24xB [因为点M到点F(-4,0)的距离比它到直线l:x-6=0的距离少2,所以将直线l:x-6=0左移2个单位,得到直线x-4=0,即x=4,可得点M到直线x=4的距离等于它到点(-4,0)的距离,根据抛物线的定义,可得点M的轨迹是以点(-4,0)为焦点,以直线x=4为准线的抛物线,设抛物线方程为y2=-2px(p>0),可得=4,得2p=16,所以抛物线的方程为y2=-16x,即为M点的轨迹方程.]3.(2020·北京高考)设抛物线的顶点为O,焦点为F,准线为l.P是抛物线上异于O的一点,过P作PQ⊥l于Q,则线段FQ的垂直平分线( )A.经过点O B.经过点PC.平行于直线OP D.垂直于直线OPB [如图所示:因为线段FQ的垂直平分线上的点到F,Q的距离相等,又点P在抛物线上,根据定义可知,|PQ|=|PF|,所以线段FQ的垂直平分线经过点P.故选B.]4.(2021·安徽合肥一中高三期末)如图,过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则抛物线的方程为( )A.y2=x B.y2=3xC.y2=x D.y2=9xB [如图分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,则由已知得:|BC|=2a,由定义得:|BD|=a,故∠BCD=30°,在直角三角形ACE中,∵|AE|=3,|AC|=3+3a,∴2|AE|=|AC|,∴3+3a=6,从而得a=1,∵BD∥FG,∴=,求得p=,所以抛物线的方程为y2=3x.]5.过抛物线y2=4x的焦点F且斜率为2的直线交抛物线于A,B两点(xA>xB),则=( )A. B. C.3 D.2D [设直线方程为y=2(x-1),与y2=4x联立得2x2-5x+2=0,所以(2x-1)(x-2)=0,x1=,x2=2.因为xA>xB,所以xA=2,xB=,所以===2.]6.已知点P是抛物线y2=2px(p>0)上一点,且点P到点A(0,-2)的距离与到y轴的距离之和的最小值为2-2,则p=( )A.2 B.4 C.3 D.4D [如图所示,由题得准线方程为x=-,点P到点A(0,-2)的距离与到y轴的距离之和为|PA|+|PF|-≥|AF|-,(当点P在线段AF与抛物线的交点时取等号)|AF|==,所以-=2-2,解之得p=4.]二、填空题7.已知抛物线C:y2=2px(p>0)的焦点为F(2,0),则抛物线C的方程是 ;若M是C上一点,FM的延长线交y轴于点N,且M为FN的中点,则|FN|= .y2=8x 6 [抛物线C:y2=2px(p>0)的焦点为F(2,0),可得p=4,则抛物线C的方程是y2=8x.由M为FN的中点,得M的横坐标为1,代入抛物线方程得y=±2,则M(1,±2),则点N的坐标为(0,±4),所以|FN|==6.]8.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽 米.2 [建立平面直角坐标系如图所示,设抛物线方程为x2=-2py(p>0).由题意可知抛物线过点(2,-2),故4=4p,∴p=1,∴x2=-2y.故当y=-3时,x2=6,即x=.所以当水位降1米后,水面宽2米.]9.(2021·新高考Ⅰ卷)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程为 .x=- [法一:由题易得|OF|=,|PF|=p,∠OPF=∠PQF,所以tan∠OPF=tan∠PQF,所以=,即=,解得p=3,所以C的准线方程为x=-.法二:由题易得|OF|=,|PF|=p,|PF|2=|OF|·|FQ|,即p2=×6,解得p=3或p=0(舍去),所以C的准线方程为x=-.]三、解答题10.如图,抛物线的顶点在原点,圆(x-2)2+y2=4的圆心恰是抛物线的焦点.(1)求抛物线的方程;(2)一条直线的斜率等于2,且过抛物线焦点,它依次截抛物线和圆于A,B,C,D四点,求|AB|+|CD|的值.[解](1)设抛物线方程为y2=2px(p>0),∵圆(x-2)2+y2=22的圆心恰是抛物线的焦点,∴p=4.∴抛物线的方程为y2=8x.(2)依题意直线AB的方程为y=2x-4,设A(x1,y1),D(x2,y2),则得x2-6x+4=0,∴x1+x2=6,|AD|=x1+x2+p=6+4=10.|AB|+|CD|=|AD|-|CB|=10-4=6.11.如图,已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:GF为∠AGB的平分线.[解](1)由抛物线定义可得|AF|=2+=3,解得p=2.∴抛物线E的方程为y2=4x.(2)证明:∵点A(2,m)在抛物线E上,∴m2=4×2,解得m=±2,由抛物线的对称性,不妨设A(2,2),由A(2,2),F(1,0),∴直线AF的方程为y=2(x-1),由得2x2-5x+2=0,解得x=2或,∴B.又G(-1,0),∴kGA=,kGB=-,∴kGA+kGB=0,∴∠AGF=∠BGF.∴GF为∠AGB的平分线.1.已知P是抛物线y2=4x上的一个动点,Q是圆(x-3)2+(y-1)2=1上的一个动点,N(1,0)是一个定点,则|PQ|+|PN|的最小值为( )A.3 B.4 C.5 D.+1A [由抛物线方程y2=4x,可得抛物线的焦点F(1,0),又N(1,0),所以N与F重合.过圆(x-3)2+(y-1)2=1的圆心M作抛物线准线的垂线MH,交圆于Q,交抛物线于P,则|PQ|+|PN|的最小值等于|MH|-1=3.]2.已知抛物线C:y2=4x的焦点为F,过点F的直线与抛物线C的两个交点分别为A,B,且满足=2,E为AB的中点,则点E到抛物线准线的距离为( )A. B. C. D.B [由题意得抛物线y2=4x的焦点坐标为(1,0),准线方程为x=-1,设A(x1,y1),B(x2,y2),∵=2,∴|AF|=2|BF|,∴x1+1=2(x2+1),∴x1=2x2+1,∵|y1|=2|y2|,∴y=4y,∴x1=4x2,∴x1=2,x2=.∴线段AB的中点到该抛物线准线的距离为[(x1+1)+(x2+1)]=.故选B.]3.已知点A(m,4)(m>0)在抛物线x2=4y上,过点A作倾斜角互补的两条直线l1和l2,且l1,l2与抛物线的另一个交点分别为B,C.(1)求证:直线BC的斜率为定值;(2)若抛物线上存在两点关于BC对称,求|BC|的取值范围.[解](1)证明:∵点A(m,4)在抛物线上,∴16=m2,∴m=±4,又m>0,∴m=4.设B(x1,y1),C(x2,y2),则kAB+kAC=+==0,∴x1+x2=-8.∴kBC====-2,∴直线BC的斜率为定值-2.(2)设直线BC的方程为y=-2x+b,P(x3,y3),Q(x4,y4)关于直线BC对称,设PQ的中点为M(x0,y0),则kPQ====,∴x0=1.∴M(1,-2+b).又点M在抛物线内部,∴-2+b>,即b>.由得x2+8x-4b=0,∴x3+x4=-8,x3x4=-4b.∴|BC|=|x3-x4|=·=×.又b>,∴|BC|>10.∴|BC|的取值范围为(10,+∞).1.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线y2=4x的焦点为F,一条平行于x轴的光线从点M(3,1)射出,经过抛物线上的点A反射后,再经抛物线上的另一点B射出,则△ABM的周长为( )A.+ B.9+C.+ D.9+D [∵MA∥x轴,∴A,由题意可知AB经过抛物线y2=4x的焦点F(1,0),∴直线AB的方程为y=-(x-1).联立方程解得B(4,-4),∴|AM|=3-=,|AB|=+4+2=,|MB|==.∴△ABM的周长为9+.故选D.]2.已知抛物线Γ:y2=4x的焦点为F,若△ABC的三个顶点都在抛物线Γ上,且++=0,则称该三角形为“核心三角形”.(1)是否存在“核心三角形”,其中两个顶点的坐标分别为(0,0)和(1,2)?请说明理由;(2)设“核心三角形”ABC的一边AB所在直线的斜率为4,求直线AB的方程;(3)已知△ABC是“核心三角形”,证明:点A的横坐标小于2.[解](1)抛物线Г:y2=4x的焦点为F(1,0),由++=0,得1=,0=,故第三个顶点的坐标为3(1,0)-(0,0)-(1,2)=(2,-2),但点(2,-2)不满足抛物线的方程,即点(2,-2)不在抛物线上,所以这样的“核心三角形”不存在.(2)设直线AB的方程为y=4x+t,与y2=4x联立,可得y2-y+t=0,设A(x1,y1),B(x2,y2),C(x3,y3),y1+y2=1,x1+x2=(y1+y2-2t)=-t,由(x1+x2+x3,y1+y2+y3)=(3,0),可得x3=t+,y3=-1,代入方程y2=4x,可得11+2t=1,解得t=-5,所以直线AB的方程为4x-y-5=0.(3)证明:设直线BC的方程为x=ny+m,与y2=4x联立,可得y2-4ny-4m=0,因为直线BC与抛物线相交,故判别式Δ=16(n2+m)>0,y1+y2=4n,所以x1+x2=n(y1+y2)+2m=4n2+2m,可得点A的坐标为(-4n2-2m+3,-4n),又因为A在抛物线上,故16n2=-16n2-8m+12,可得m=-4n2+,因为m>-n2,所以n2<,故A的横坐标为-4n2-2m+3=-4n2+8n2=4n2<2.
相关试卷
这是一份2023届高考数学一轮复习作业直线与椭圆新人教B版(答案有详细解析),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023届高考数学一轮复习作业圆的方程新人教B版(答案有详细解析),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023届高考数学一轮复习作业数列新人教B版(答案有详细解析),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。