初中数学湘教版八年级上册2.2 命题与证明第2课时学案及答案
展开1.会判断一个命题的真假,并且知道要判定一个命题是真命题需要证明;要判定一个命题是假命题,只需举反例.(重点)
2.知道基本事实、定理和逆定理的含义,以及它们之间的内在联系.
3.知道基本事实与定理的区别,认识基本事实是进行逻辑推理的基本依据.
知识模块 探究真命题、假命题、基本事实的相关概念
【合作探究】
教材P53议一议.
1.我们把__正确__的命题叫真命题,把__错误__的命题叫假命题.
2.要判断一个命题是真命题,常常要从命题的__条件__出发,通过__讲道理__得出其结论__成立__,从而判断这个命题为真命题,这个过程叫__证明__.
3.要判断一个命题是假命题,只需举出一个__反例__,它符合命题的__条件__,但不满足命题的__结论__,从而就可以判断这个命题为假命题.
4.我们把通过证明为真的命题叫__定理__,把人们长期实践中总结出来的公认的真命题叫__公理__,又叫基本事实.
5.如果一个定理的逆命题被证明是真命题,那么就叫它是原定理的__逆定理__,这两个定理叫作__互逆定理__.
【自主学习】
1.有下面命题:
(1)直角三角形的两个锐角互余;(2)钝角三角形的两个内角互补;(3)两个锐角的和一定是直角;(4)两点之间线段最短.其中,真命题有(B)
A.1个 B.2个 C.3个 D.4个
2.判断下列命题的真假,举出反例.
①大于锐角的角是钝角; ②如果一个实数有算术平方根,那么它的算术平方根是整数; ③如果AC=BC,那么点C是线段AB的中点.
解:①②③都是假命题.①的反例:90°的角大于锐角,但不是钝角.②的反例:5有算术平方根,但算术平方根不是整数.③的反例:如果AC=BC,而点A、B、C三点不在同一直线上,那么点C就不是AB的中点.
活动1 小组讨论
例1 下列命题中,哪些正确,哪些错误?
(1)每一个月都有31天;
(2)如果a是有理数,那么a是整数;
(3)同位角相等;
(4)同角的补角相等.
解:(4)正确,(1)(2)(3)错误.
例2 举反例说明下列命题是假命题.
(1)若两个角不是对顶角,则这两个角不相等;
(2)若ab=0,则a+b=0.
解:(1)如:两条直线平行时的内错角,这两个角不是对顶角,但它们相等;
(2)如:当a=5,b=0时,ab=0,但a+b≠0.
活动2 跟踪训练
1.下列命题中,真命题是(D)
A.相等的角是直角
B.不相交的两条线段平行
C.两直线平行,同位角互补
D.经过两点有且只有一条直线
2.写出你熟悉的一个定理:__两直线平行,内错角相等__,写出这个定理的逆定理:__内错角相等,两直线平行__.
3.下列命题是真命题吗?若不是请举出反例.
(1)只有锐角才有余角.
解:真命题.
(2)若x2=4,则x=2;
解:假命题,如x=-2.
(3)a2+1≥1;
解:真命题.
(4)若|a|=-a,则a<0.
解:假命题,如a=0.
活动3 课堂小结
初中数学湘教版八年级上册第2章 三角形2.2 命题与证明第1课时导学案: 这是一份初中数学湘教版八年级上册第2章 三角形2.2 命题与证明第1课时导学案,共4页。学案主要包含了自主学习,合作探究等内容,欢迎下载使用。
湘教版八年级上册2.2 命题与证明第1课时学案: 这是一份湘教版八年级上册2.2 命题与证明第1课时学案,共4页。学案主要包含了自主学习,合作探究等内容,欢迎下载使用。
初中数学湘教版八年级上册2.2 命题与证明第1课时学案: 这是一份初中数学湘教版八年级上册2.2 命题与证明第1课时学案,共4页。学案主要包含了自主学习,合作探究等内容,欢迎下载使用。