搜索
    上传资料 赚现金
    【新教材精创】4.2.2等差数列的前n项和公式(2)教学设计- (人教A版 高二 选择性必修第二册)
    立即下载
    加入资料篮
    【新教材精创】4.2.2等差数列的前n项和公式(2)教学设计- (人教A版 高二 选择性必修第二册)01
    【新教材精创】4.2.2等差数列的前n项和公式(2)教学设计- (人教A版 高二 选择性必修第二册)02
    【新教材精创】4.2.2等差数列的前n项和公式(2)教学设计- (人教A版 高二 选择性必修第二册)03
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版 (2019)选择性必修 第二册4.2 等差数列教学设计及反思

    展开
    这是一份人教A版 (2019)选择性必修 第二册4.2 等差数列教学设计及反思,共8页。

    4.2.2等差数列的前n项和公式(2       

            

     

    本节课选自2019人教A版高中数学选择性必修章《数列》,本节课主要学习等差数列的前n项和公式(2

    数列是高中代数的主要内容,它与数学课程的其它内容(函数、三角、不等式等)有着密切的联系,又是今后学习高等数学的基础,所以在高考中占有重要地位。

    数列是培养学生数学能力的良好题材。等差数列前n项和公式的推导过程中,让学生经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思,进一步培养学生灵活运用公式的能力。发展学生逻辑推理、直观想象、数学运算和数学建模的核心素养。

    课程目标

    学科素养

    A.等差数列掌握等差数列前n项和的性质及应用.

    B.会求等差数列n项和的最值.

    1.数学抽象:等差数列n项和公式

    2.逻辑推理:等差数列n项和公式与二次函数

    3.数学运算:等差数列前n项的应用

    4.数学建模:等差数列前n具体应用

     

     

    重点: 求等差数列前n项和的最值

    难点: 等差数列前n项和的性质及应用

    多媒体

     

     

     

    教学过程

    教学设计意图

    核心素养目标

    一、    课前小测

    1.思考辨析

    (1)Sn为等差数列{an}的前n项和,则数列也是等差数列.(  )

    (2)a1>0d<0,则等差数列中所有正项之和最大.(  )

    (3)在等差数列中,Sn是其前n项和,则有S2n1(2n1)an.(  )

    [答案] (1) (2) (3)

    2.在项数为2n1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于(  )

    A9    B10            C11             D12

    B [.n10.故选B项.]

    3.等差数列{an}中,S24S49,则S6________.

    15 [S2S4S2S6S4成等差数列得2(S4S2)S2(S6S4)解得S615.]

    4.已知数列{an}的通项公式是an2n48,则Sn取得最小值时,n________.

    2324 [an02n480n24.所有负项的和最小,即n2324.]

    典例解析

    8.某校新建一个报告厅,要求容800个座位,报告厅共20排座位,从2排起后一排都比前一排多两个座位. 1排应安排多少个座位?

    分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前项和为。由题意可知, {an}是等差数列,且公差及前20项和已知,所以可利用等差数列的前项和公式求首项。

    解:设报告厅的座位从1排到20排,各排的座位数依次排成一列,构成数列{an},其n项和为Sn.根据题意,数列{an}是一个公差2的等差数列,S20800.

    a1 21

    因此,第1排应安排21个座位。

    a121.

    因此,第1排应安排21个座位.

    1.本题属于与等差数列前n项和有关的应用题,其关键在于构造合适的等差数列.

    2.遇到与正整数有关的应用题时,可以考虑与数列知识联系,建立数列模型,具体解决要注意以下两点:

    (1)抓住实际问题的特征,明确是什么类型的数列模型.

    (2)深入分析题意,确定是求通项公式an或是求前n项和Sn,还是求项数n.

    跟踪训练1. 某抗洪指挥部接到预报,24小时后有一洪峰到达,为确保安全,指挥部决定在洪峰到来之前临时筑一道堤坝作为第二道防线.经计算,除现有的参战军民连续奋战外,还需调用20台同型号翻斗车,平均每辆车工作24小时.从各地紧急抽调的同型号翻斗车目前只有一辆投入使用,每隔20分钟能有一辆翻斗车到达,一共可调集25辆,那么在24小时内能否构筑成第二道防线?

     

    分析因为每隔20分钟到达一辆车,所以每辆车的工作量构成一个等差数列.工作量的总和若大于欲完成的工作量,则说明24小时内可完成第二道防线工程.

    :从第一辆车投入工作算起,各车工作时间(单位:小时)依次设为a1a2a25.由题意可知,此数列为等差数列,且a124,公差d=-.

    25辆翻斗车完成的工作量为:a1a2a2525×2425×12×500,而需要完成的工作量为24×20480.500>480

    24小时内能构筑成第二道防线.

     

     

    9.已知等差数列{an}n项和Sna110,公d=-2Sn是否存在最大值?若存在,Sn的最大值及取得最大值n的值;若不存在,请说明理由.

    分析数项的

    另一方面,等差数列的前n项和公式可写成

    ,所以当时, 可以看成二次函数

    ,当= 时函数值。如图,当 时, 关于的图像是一条开口向下的抛物线上的一些点,因此,可以利用二次函数求相应, 的值。

    解法1.d=-2an1an=-20,得an1an ,所以{an}是递减数列. a110d=-2

    an10(n1)×(2) =-2n12.

    可知,当n6时,an0

    n6时,an0

    n6时,an0.

    , S1S2S5S6 S7

    也就是说,当n56时,Sn最大.

    因为 =30

    Sn的最大值为30.

    解法2:因为a110d=-2

    因为

    所以,n取与 最接近的整数,

    56时,Sn最大,最大值为30.

     

    1.在等差数列中,求Sn的最小()值的方法:

    (1)利用通项公式寻求正、负项的分界点,则从第一项起到分界点该项的各项和为最大()

    (2)借助二次函数的图象及性质求最值.

    2.寻求正、负项分界点的方法:

     (1)寻找正、负项的分界点来寻找.

     (2)利用到yax2bx(a≠0)的对称轴距离最近的左侧的一个正数或离对称轴最近且关于对称轴对称的两个整数对应项即为正、负项的分界点.

     

    跟踪训练2. 数列{an}的前n项和Sn33nn2

    (1){an}的通项公式;

    (2){an}前多少项和最大;

    (3)bn|an|,求数列{bn}的前n项和Sn.

    分析(1)利用Snan的关系求通项,也可由Sn的结构特征求a1d,从而求出通项.

    (2)利用Sn的函数特征求最值,也可以用通项公式找到通项的变号点求解

    (3)利用an判断哪些项是正数,哪些项是负数,再求解,也可以利用Sn的函数特征判断项的正负求解.

     

    [] (1)(公式法)n2时,anSnSn1342n

     又当n1时,a1S132342×1满足an342n.

    {an}的通项公式为an342n.

    法二:(结构特征法)Sn=-n233nSn是关于n的缺常数项的二次型函数,所以{an}是等差数列,由Sn的结构特征知

    解得a132d=-2,所以an342n.

    (2)(公式法)an0,得342n0,所以n17

    故数列{an}的前17项大于或等于零.

    a170,故数列{an}的前16项或前17项的和最大.

    法二:(函数性质法)y=-x233x的对称轴为x.

    距离最近的整数为16,17.Sn=-n233n

    图象可知:当n17时,an0,当n18时,an<0

    故数列{an}的前16项或前17项的和最大.

    (3)(2)知,当n17时,an0

    n18时,an<0.

    所以当n17时,Snb1b2bn

    |a1||a2||an|

    a1a2anSn33nn2.

    n18时,

    Sn|a1||a2||a17||a18||an|

    a1a2a17(a18a19an)

    S17(SnS17)2S17Sn

    n233n544.

    Sn

     

     

     

     

    通过课前检测,检测学生对知识的掌握情况发展学生数学抽象、数学运算、数学建模的核心素养。

     

     

     

     

     

     

     

     

     

     

     

    通过等差数列实际问题应用发展学生数学抽象和数学建模的核心素养。

     

     

     

     

     

     

     

     

     

    通过典型例题,加深学生对等差数列求和公式函数特征的理解发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    通过典型例题,加深学生对等差数列求和公式的综合运用能力发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素

    三、达标检测

    1(多选已知Sn是等差数列{an}的前n项和,且S6>S7>S5,有下列四个命题正确的是(  )

    A.d<0    B.S11>0     C.S12<0     D.数列{Sn}中的最大项为S11

     

    【答案】AB 

    解析S6>S7a7<0S7>S5a6a7>0

    a6>0d<0A正确.又S11(a1a11)11a6>0B正确.

    S12(a1a12)6(a6a7)>0C不正确.{Sn}中最大项为S6D不正确.

    故正确的是AB]

     

    2.已知等差数列{an}中,|a5||a9|,公差d>0,则使得前n项和Sn取得最小值的正整数n的值是________

     

    【答案】67 

    [|a5||a9|d>0a5<0a9>0,且a5a902a112d0

    a16d0,即a70,故S6S7且最小.]

    3.已知数列{an}的前n项和公式为Snn230n.

    (1)求数列 {an}的通项公式an

    (2)Sn的最小值及对应的n.

    【答案】 (1)Snn230n

    n1时,a1S1=-29.

    n2时,anSnSn1(n230n)[(n1)230(n1)]2n31.

    n1也适合,

    an2n31nN*.

     (2)Snn230n2225

    n15时,Sn最小,且最小值为S15=-225.

    法二:an2n31a1<a2<<a15<0,当n>15时,an>0.

    n15时,Sn最小,且最小值为S15=-225.

     

    通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理直观想象、数学建模的核心素养。

     

     

     

     

    四、小结

    等差数列前n项和Sn的最值

    (1)a1<0d>0,则数列的前面若干项为负数项(0),所以将这些项相加即得{Sn}的最值.

    (2)a1>0d<0,则数列的前面若干项为正数项(0),所以将这些项相加即得{Sn}的最值.

    特别地,若a1>0d>0,则S1{Sn}的最值;若a1<0d<0,则S1{Sn}的最大值.

     

    五、课时练

    通过总结,让学生进一步巩固本节所学内容,提高概括能力。

     

     

    由于教师不仅是知识的传授者,而且也是学生学习的引导者、组织者和合作者。所以我采用问题情景---建立模型---求解---解释---应用的教学模式,启发引导学生通过对问题的亲身动手探求、体验,获得不仅是知识,更重要的是掌握了在今后的发展中用这种手段去获取更多的知识的方法。这是教师教给学生寻找水的方法或给学生一杯水,使学生能找到一桶水乃至更多活水的求知方式。多媒体可以使教学内容生动、形象、鲜明地得到展示。

     

     

     

     

    相关教案

    数学选择性必修 第二册第四章 数列4.2 等差数列精品教案: 这是一份数学选择性必修 第二册第四章 数列4.2 等差数列精品教案,共10页。

    数学4.2 等差数列精品教学设计: 这是一份数学4.2 等差数列精品教学设计,共10页。

    高中数学人教A版 (2019)选择性必修 第二册4.3 等比数列教学设计: 这是一份高中数学人教A版 (2019)选择性必修 第二册4.3 等比数列教学设计,共8页。教案主要包含了典例解析,达标检测,小结,课时练等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map