5.5动力学方法和能量观点的综合应用-2023年高考物理一轮复习提升核心素养
展开5.5动力学方法和能量观点的综合应用
一、动力学方法和能量观点的基本理论
动力学观点 | 牛顿第二定律 | F合=ma |
匀变速直线运动规律 | v=v0+at x=v0t+at2 v2-v02=2ax等 | |
能量观点 | 动能定理 | W合=ΔEk |
机械能守恒定律 | Ek1+Ep1=Ek2+Ep2 | |
功能关系 | WG=-ΔEp等 | |
能量守恒定律 | E1=E2 |
二、选用原则
(1)当物体受到恒力作用做匀变速直线运动(曲线运动某一方向可分解为匀变速直线运动),涉及时间与运动细节时,一般选用动力学方法解题.
(2)当涉及功、能和位移时,一般选用动能定理、机械能守恒定律、功能关系或能量守恒定律解题,题目中出现相对位移(摩擦生热)时,应优先选用能量守恒定律.
传送带模型
1.设问的角度
(1)动力学角度:首先要正确分析物体的运动过程,做好受力分析,然后利用运动学公式结合牛顿第二定律求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系.
(2)能量角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等,常依据功能关系或能量守恒定律求解.
2.功能关系分析
(1)传送带克服摩擦力做的功:W=Ffx传;
(2)系统产生的内能:Q=Ffx相对.
(3)功能关系分析:W=ΔEk+ΔEp+Q.
例题1.(多选)如图所示为某建筑工地所用的水平放置的运输带,在电动机的带动下运输带始终以恒定的速度v0=1 m/s顺时针传动.建筑工人将质量m=2 kg的建筑材料静止地放到运输带的最左端,同时建筑工人以v0=1 m/s的速度向右匀速运动.已知建筑材料与运输带之间的动摩擦因数为μ=0.1,运输带的长度为L=2 m,重力加速度大小为g=10 m/s2.以下说法正确的是( )
A.建筑工人比建筑材料早到右端0.5 s
B.建筑材料在运输带上一直做匀加速直线运动
C.因运输建筑材料电动机多消耗的能量为1 J
D.运输带对建筑材料做的功为1 J
如图所示,绷紧的传送带与水平面的夹角θ=30°,传送带在电动机的带动下,始终保持v0=2 m/s的速率运行,现把一质量为m=10 kg的工件(可视为质点)轻轻放在传送带的底端,经过时间t=1.9 s,工件被传送到h=1.5 m的高处,g取10 m/s2,求:
(1)工件与传送带间的动摩擦因数;
(2)电动机由于传送工件多消耗的电能.
(多选)如图甲,一足够长的传送带与水平面的夹角θ=30°,皮带在电动机的带动下,速率始终不变.t=0时刻在传送带适当位置放上一具有初速度的小物块.取沿斜面向上为正方向,物块在传送带上运动的速度随时间的变化如图乙所示.已知小物块质量m=1 kg,g取10 m/s2,下列说法正确的是( )
A.传送带顺时针转动,速度大小为2 m/s
B.传送带与小物块之间的动摩擦因数μ=
C.0~t2时间因摩擦产生热量为27 J
D.0~t2时间内电动机多消耗的电能为28.5 J
滑块—木板模型综合分析
“滑块—木板”模型问题的分析方法
(1)动力学分析:分别对滑块和木板进行受力分析,根据牛顿第二定律求出各自的加速度;从放上滑块到二者速度相等,所用时间相等,由t==,可求出共同速度v和所用时间t,然后由位移公式可分别求出二者的位移.
(2)功和能分析:对滑块和木板分别运用动能定理,或者对系统运用能量守恒定律.如图所示,要注意区分三个位移:
①求摩擦力对滑块做功时用滑块对地的位移x滑;
②求摩擦力对木板做功时用木板对地的位移x板;
③求摩擦生热时用相对位移Δx.
例题2.(多选)如图甲所示,一长木板静止在水平地面上,在t=0时刻,一小物块以一定速度从左端滑上长木板,之后长木板运动的v-t图像如图乙所示,已知小物块与长木板的质量均为m=1 kg,已知木板足够长,g取10 m/s2,则( )
A.小物块与长木板间动摩擦因数μ=0.5
B.在整个运动过程中,物块与木板构成的系统所产生的热量70 J
C.小物块的初速度为v0=12 m/s
D.0~2 s与2~3 s物块和木板构成的系统机械能减少量之比为17∶1
(多选)如图所示,质量为M、长度为L的小车静止在光滑的水平面上.质量为m的小物块(可视为质点)放在小车的最左端.现用一水平恒力F作用在小物块上,使小物块从静止开始做匀加速直线运动.小物块和小车之间的摩擦力大小为Ff,小物块滑到小车的最右端时,小车运动的距离为x,在这个过程中,以下结论正确的是( )
A.小物块到达小车最右端时具有的动能为F(L+x)
B.小物块到达小车最右端时,小车具有的动能为Ffx
C.摩擦力对小物块所做的功为Ff(L+x)
D.小物块在小车上滑行过程中,系统产生的内能为FfL
(多选)如图所示,一倾角为θ=37°的足够长斜面体固定在水平地面上,质量为M=2 kg的长木板B沿着斜面以速度v0=9 m/s匀速下滑,现把质量为m=1 kg的铁块A无初速度放在长木板B的左端,铁块最终恰好没有从长木板上滑下.已知A与B之间、B与斜面之间的动摩擦因数均为μ,最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8,则下列判断正确的是( )
A.动摩擦因数μ=0.5
B.铁块A和长木板B共速后的速度大小为6 m/s
C.长木板的长度为2.25 m
D.从铁块放上长木板到铁块和长木板共速的过程中,铁块A和长木板B减少的机械能等于A、B之间摩擦产生的热量
多运动组合问题
1.分析思路
(1)受力与运动分析:根据物体的运动过程分析物体的受力情况,以及不同运动过程中力的变化情况;
(2)做功分析:根据各种力做功的不同特点,分析各种力在不同运动过程中的做功情况;
(3)功能关系分析:运用动能定理、机械能守恒定律或能量守恒定律进行分析,选择合适的规律求解.
2.方法技巧
(1)“合”——整体上把握全过程,构建大致的运动情景;
(2)“分”——将全过程进行分解,分析每个子过程对应的基本规律;
(3)“合”——找出各子过程之间的联系,以衔接点为突破口,寻求解题最优方案.
例题3.跳台滑雪是冬奥会的比赛项目之一,一简化后的跳台滑雪的雪道示意图如图所示。助滑坡由AB和BC组成,AB为斜坡,BC为R=10 m的圆弧面,二者相切于B点,与水平面相切于C点,AC间的竖直高度差h1=40 m,CD为竖直跳台。运动员连同滑雪装备总质量为80 kg,从A点由静止滑下,通过C点水平飞出,飞行一段时间落到着陆坡DE上的E点。运动员运动到C点时的速度是20 m/s,CE间水平方向的距离x=40 m。不计空气阻力,g取10 m/s2。求:
(1)运动员从A点滑到C点过程中阻力做的功;
(2)运动员到达C点时对滑道的压力大小;
(3)运动员落到E点时的瞬时速度大小。
某游乐场的游乐装置可简化为如图所示的竖直面内轨道BCDE,左侧为半径R=0.8 m的光滑圆弧轨道BC,轨道的上端点B和圆心O的连线与水平方向的夹角α=30°,下端点C与粗糙水平轨道CD相切,DE为倾角θ=30°的光滑倾斜轨道,一轻质弹簧上端固定在E点处的挡板上.现有质量为m=1 kg的小滑块P(可视为质点)从空中的A点以v0= m/s的初速度水平向左抛出,恰好从B点沿轨道切线方向进入轨道,沿着圆弧轨道运动到C点之后继续沿水平轨道CD滑动,经过D点(不计经过D点时的能量损失)后沿倾斜轨道向上运动至F点(图中未标出),弹簧恰好压缩至最短.已知C、D之间和D、F之间距离都为1 m,滑块与轨道CD间的动摩擦因数为μ=0.5,重力加速度g=10 m/s2,不计空气阻力.求:
(1)小滑块P经过圆弧轨道上B点的速度大小;
(2)小滑块P到达圆弧轨道上的C点时对轨道压力的大小;
(3)弹簧的弹性势能的最大值;
(4)试判断滑块返回时能否从B点离开,若能,求出飞出B点的速度大小;若不能,判断滑块最后位于何处.
如图所示,竖直放置的半径为R=0.2 m的螺旋圆形轨道BGEF与水平直轨道MB和BC平滑连接,倾角为θ=30°的斜面CD在C处与直轨道BC平滑连接.水平传送带MN以v0=4 m/s的速度沿顺时针方向运动,传送带与水平地面的高度差为h=0.8 m,MN间的距离为LMN=3.0 m,小滑块P与传送带和BC段轨道间的动摩擦因数μ=0.2,轨道其他部分均光滑.直轨道BC长LBC=1 m,小滑块P质量为m=1 kg.重力加速度g取10 m/s2.
(1)若滑块P第一次到达与圆轨道圆心O等高的F点时,对轨道的压力刚好为零,求滑块P从斜面静止下滑处与BC轨道高度差H;
(2)若滑块P从斜面高度差H′=1.0 m处静止下滑,求滑块从N点平抛后到落地过程的水平位移;
(3)滑块P在运动过程中能两次经过圆轨道最高点E点,求滑块P从斜面静止下滑的高度差H的范围.
动力学方法和动能定理的应用
例题4.如图所示,质量M=0.2 kg、长L=1 m的长木板放在地面上,质量m=0.8 kg的小滑块在长木板左端,竖直嵌有四分之三光滑圆弧轨道的底座固定在地面上,圆弧轨道最低点P的切线水平且与长木板上表面相平,长木板右端与底座左端相距x=1 m。现用水平向右的外力F=6 N作用在小滑块上,小滑块到达P点后撤去外力F,小滑块沿着圆弧轨道运动。长木板与底座相碰时,立即粘在底座上。已知滑块与长木板、长木板与地面间的动摩擦因数分别为μ1=0.4和μ2=0.15,重力加速度g取10 m/s2,假设最大静摩擦力等于滑动摩擦力。
(1)在长木板与底座相碰前,试判断长木板与小滑块是否发生相对滑动,并求出长木板和小滑块加速度的大小。
(2)求小滑块到达P点时速度的大小。
(3)若要使小滑块沿圆弧轨道上滑过程中不脱离轨道,竖直圆弧轨道的半径R应该满足什么条件?
如图所示,光滑水平面上有一木板,质量M=1.0 kg,长度L=1.0 m.在木板的最左端有一个小铁块(可视为质点),质量m=1.0 kg.小铁块和木板之间的动摩擦因数μ=0.30.开始时它们都处于静止状态,某时刻起对木板施加一个水平向左的拉力F将木板抽出,若F=8 N,g取10 m/s2.求:
(1)抽出木板的过程中摩擦力分别对木板和铁块做的功;
(2)抽出木板的过程中由于摩擦产生的内能Q.
如图所示,一个可视为质点的小物块的质量为m=1 kg,从光滑平台上的A点以v0=2 m/s的初速度水平抛出,到达C点时,恰好沿C点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D点的质量为M=3 kg的长木板.已知长木板上表面与圆弧轨道末端切线相平,水平地面光滑,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为0.4 m,C点和圆弧的圆心连线与竖直方向的夹角θ=60°,不计空气阻力,g取10 m/s2.求:
(1)小物块刚到达圆弧轨道末端D点时对轨道的压力;
(2)要使小物块不滑出长木板,长木板长度的最小值.
动力学方法和能量观点的综合应用
例题5.如图所示,BC是高处的一个平台,BC右端连接内壁光滑、半径r=0.2 m的四分之一细圆管CD,管口D端正下方一根劲度系数k=100 N/m 的轻弹簧直立于水平地面上,弹簧下端固定,上端恰好与管口D端平齐。一可视为质点的小球在水平地面上的A点斜向上抛出,恰好从B点沿水平方向进入高处平台,A、B间的水平距离xAB=1.2 m,小球质量m=1 kg。已知平台离地面的高度h=0.8 m,小球与BC间的动摩擦因数μ=0.2,小球进入管口C端时,它对上管壁有10 N的作用力,通过CD后,在压缩弹簧过程中小球速度最大时弹簧弹性势能Ep=0.5 J。若不计空气阻力,重力加速度大小g取10 m/s2。求:
(1)小球通过C点时的速度大小vC;
(2)平台BC的长度L;
(3)在压缩弹簧过程中小球的最大动能Ekm。
滑板运动是青少年喜爱的一项活动。如图甲所示,滑板运动员以某一初速度从A点水平离开h=0.8 m高的平台,运动员(连同滑板)恰好能无碰撞地从B点沿圆弧切线方向进入竖直光滑圆弧轨道,然后由C点滑上涂有特殊材料的水平面,水平面与滑板间的动摩擦因数从C点起按图乙规律变化。已知圆弧与水平面相切于C点,B、C为圆弧的两端点。圆弧轨道的半径R=1 m;O为圆心,圆弧对应的圆心角为53°,已知g取10 m/s2,sin 37°=0.60, cos 37°=0.80,不计空气阻力,运动员(连同滑板)质量m=50 kg,可视为质点。求:
(1)运动员(连同滑板)离开平台时的初速度v0;
(2)运动员(连同滑板)通过圆弧轨道最低点时对轨道的压力;
(3)运动员(连同滑板)在水平面上滑行的最大距离。
如图所示,半径均为R的四分之一光滑圆弧轨道AB、BC在B处平滑连接构成轨道ABC,其中AB为细管道。轨道ABC竖直放置,且固定在水平台阶CE上,圆心连线O1O2水平,台阶距离水平地面的高度为R,质量为m的小球静置于水平管口A点,若小球受微小扰动,从静止开始沿轨道ABC运动,已知小球直径略小于管道内径,重力加速度为g。
(1)小球通过C点时,求轨道对小球的弹力大小FC;
(2)小球从C点飞出落到地面上,求落地点(图中未画出)到C点的距离s;
(3)某同学将该小球从地面上的D点斜向右上方抛出,小球恰好从C点水平飞入轨道, 已知水平距离DO=2R,求小球沿轨道上滑到最高点时离地面的高度h。
1. 如图所示,足够长的水平传送带以恒定速率v匀速运动,某时刻一个质量为m的小物块,以大小也是v、方向与传送带的运动方向相反的初速度冲上传送带,最后小物块的速度与传送带的速度相同.在小物块与传送带间有相对运动的过程中,滑动摩擦力对小物块做的功为W,小物块与传送带间因摩擦产生的热量为Q,则下列判断中正确的是( )
A.W=0,Q=mv2
B.W=0,Q=2mv2
C.W=,Q=mv2
D.W=mv2,Q=2mv2
2.(多选)如图所示,质量m=1 kg的物体从高为h=0.2 m的光滑轨道上P点由静止开始下滑,滑到水平传送带上的A点,物体和传送带之间的动摩擦因数为μ=0.2,传送带A、B之间的距离为L=5 m,传送带一直以v=4 m/s的速度匀速运动,则(g取10 m/s2)( )
A.物体从A运动到B的时间是1.5 s
B.物体从A运动到B的过程中,摩擦力对物体做功为2 J
C.物体从A运动到B的过程中,产生的热量为2 J
D.物体从A运动到B的过程中,带动传送带转动的电动机多做的功为10 J
3. 如图所示,斜面ABC下端与圆轨道CDE相切于C点,整个装置竖直固定,D是圆轨道的最低点,斜面的倾角θ=37°,B与圆心O等高,圆轨道半径r=0.5 m,斜面高h=1.4 m.现有一个质量m=1 kg的小物块P(视为质点)从斜面上端A点由静止下滑,经竖直圆轨道回到最低点D′以后经直轨道D′F冲上两个半径均为R=0.4 m的圆管轨道,所有轨道均光滑,取sin 37°=0.6,cos 37°=0.8,g取10 m/s2,忽略空气阻力,求:
(1)物块到达D点时对轨道的压力大小;
(2)若物块要在不脱离轨道的基础上能通过圆管轨道最高点G,则物块释放的高度H(距离斜面底端的高度)至少为多少?
4. 如图所示,半径为R的光滑圆弧轨道ABC固定在竖直平面内,O为圆心,OC竖直,OA水平,B为圆弧的最低点,B点紧靠一足够长的平台MN。D点位于A点正上方。现从D点无初速度释放一个可视为质点的小球,在A点进入圆弧轨道,从C点飞出后做平抛运动,不计空气阻力,重力加速度为g。
(1)通过计算说明小球能否重新落回到轨道内侧;
(2)若DA之间的高度差为3R,求小球落地点P到B点的距离L。
5. 如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R; bc是半径为R的四分之一圆弧,与ab相切于b点。一质量为m的小球,始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动。重力加速度大小为g。小球从a点开始运动到其轨迹最高点,机械能的增量为( )
A.2mgR B.4mgR
C.5mgR D.6mgR
6. 一条长为0.80 m的轻绳一端固定在O点,另一端连接一质量m=0.10 kg的小球,悬点O距离水平地面的高度H=1.00 m,开始时小球处于A点,此时轻绳拉直处于水平方向上,如图2所示,让小球从静止释放,当小球运动到B点时,轻绳碰到悬点O正下方一个固定的光滑小钉子P时立刻断裂,不计轻绳断裂的能量损失,取重力加速度g=10 m/s2,不计空气阻力.
图2
(1)求当小球运动到B点时的速度大小;
(2)绳断裂后小球从B点抛出并落在水平地面的C点,求小球落到C点时的瞬时速度的大小.
7. 跳台滑雪运动员脚穿专用滑雪板,不借助任何外力,从起滑台起滑,在助滑道上获得高速度,于台端飞出,沿抛物线在空中飞行,在着陆坡着陆后,继续滑行至水平停止区静止.如图所示为一简化后的跳台滑雪的雪道示意图.助滑坡由倾角为θ=37°的斜面AB和半径为R1=10 m的光滑圆弧BC组成,两者相切于B.AB竖直高度差h1=30 m,竖直跳台CD高度差为h2=5 m,着陆坡DE是倾角为θ=37°的斜坡,长L=130 m,下端与半径为R2=20 m的光滑圆弧EF相切,且EF下端与停止区相切于F.运动员从A点由静止滑下,通过C点,以速度vC=25 m/s水平飞出落到着陆坡上,然后运动员通过技巧使垂直于斜坡速度降为0,以沿斜坡的分速度继续下滑,经过EF到达停止区FG.若运动员连同滑雪装备总质量为80 kg.(不计空气阻力,sin 37°=0.6,cos 37°=0.8,g=10 m/s2)求:
(1)运动员在C点对台端的压力大小;
(2)滑板与斜坡AB间的动摩擦因数;
(3)运动员在着陆坡上的落点距离D多远;
(4)运动员在停止区靠改变滑板方向增加制动力,若运动员想在60 m之内停下,制动力至少是总重力的几倍.(设两斜坡粗糙程度相同,计算结果保留两位有效数字)
8. 如图所示,水平地面上有一长L=2 m、质量M=1 kg的长板,其右端上方有一固定挡板.质量m=2 kg的小滑块从长板的左端以v0=6 m/s的初速度向右运动,同时长板在水平拉力F作用下以v=2 m/s的速度向右匀速运动,滑块与挡板相碰后速度为0,长板继续匀速运动,直到长板与滑块分离.已知长板与地面间的动摩擦因数μ1=0.4,滑块与长板间的动摩擦因数μ2=0.5,重力加速度g取10 m/s2.求:
(1)滑块从长板的左端运动至挡板处的过程,长板的位移x;
(2)滑块碰到挡板前,水平拉力大小F;
(3)滑块从长板的左端运动至与长板分离的过程,系统因摩擦产生的热量Q.
9. 如图所示为一遥控电动赛车(可视为质点)和它的运动轨道示意图.假设在某次演示中,赛车从A位置由静止开始运动,工作一段时间后关闭电动机,赛车继续前进至B点后水平飞出,赛车能从C点无碰撞地进入竖直平面内的圆形光滑轨道,D点和E点分别为圆形轨道的最高点和最低点.已知赛车在水平轨道AB段运动时受到的恒定阻力为0.4 N,赛车质量为0.4 kg,通电时赛车电动机的输出功率恒为2 W,B、C两点间高度差为0.45 m,赛道AB的长度为2 m,C与圆心O的连线与竖直方向的夹角α=37°,空气阻力忽略不计,sin 37°=0.6,cos 37°=0.8,取g=10 m/s2,求:
(1)赛车通过C点时的速度大小;
(2)电动机工作的时间;
(3)要使赛车能通过圆轨道最高点D后沿轨道回到水平赛道EG,轨道半径R需要满足什么条件?
10. 如图所示,水平传送带足够长,向右前进的速度v=4 m/s,与倾角为37°的斜面的底端P平滑连接,将一质量m=2 kg的小物块从A点静止释放.已知A、P的距离L=8 m,物块与斜面、传送带间的动摩擦因数分别为μ1=0.25、μ2=0.20,取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求物块:
(1)第1次滑过P点时的速度大小v1;
(2)第1次在传送带上往返运动的时间t;
(3)从释放到最终停止运动,与斜面间摩擦产生的热量Q.
高考物理考前知识专题 6 动力学、动量和能量观点的综合应用: 这是一份高考物理考前知识专题 6 动力学、动量和能量观点的综合应用,共15页。试卷主要包含了动量定理公式,力学规律的选用原则,5 m,2 m/s,v2=5,5 J等内容,欢迎下载使用。
新高考物理一轮复习重难点练习难点10 动力学和能量观点的综合应用(含解析): 这是一份新高考物理一轮复习重难点练习难点10 动力学和能量观点的综合应用(含解析),共30页。试卷主要包含了传送带模型,多运动组合问题,多选题等内容,欢迎下载使用。
2024版新教材高考物理复习特训卷考点36动力学方法和能量观点的综合应用: 这是一份2024版新教材高考物理复习特训卷考点36动力学方法和能量观点的综合应用,共6页。