所属成套资源:2023年高考物理一轮复习提升练习核心素养
6.3“碰撞类”模型问题-2023年高考物理一轮复习提升核心素养
展开
这是一份6.3“碰撞类”模型问题-2023年高考物理一轮复习提升核心素养,文件包含63“碰撞类”模型问题解析版docx、63“碰撞类”模型问题原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
6.3“碰撞类”模型问题一、碰撞的特点和分类1.碰撞的特点(1)时间特点:碰撞现象中,相互作用的时间极短,相对物体运动的全过程可忽略不计。(2)相互作用力特点:在碰撞过程中,系统的内力 外力,所以动量守恒。2.碰撞的分类(1)弹性碰撞:系统 守恒, 守恒。(2)非弹性碰撞:系统 守恒, 减少,损失的机械能转化为内能。(3)完全非弹性碰撞:系统动量守恒,碰撞后合为一体或具有 的速度,机械能损失最大。3.爆炸:一种特殊的“碰撞”特点1:系统 守恒。特点2:系统 增加。二、弹性正碰模型1.“一动碰一静”模型当v2=0时,有2.如果两个相互作用的物体,满足动量守恒的条件,且相互作用过程初、末状态的总机械能不变,广义上也可以看成弹性正碰。三、碰撞可能性分析判断碰撞过程是否存在的依据1.满足动量守恒:p1+p2=p1′+p2′。2.满足动能不增加原理:Ek1+Ek2≥Ek1′+Ek2′。3.速度要符合情景(1)如果碰前两物体同向运动,则后面物体的速度必大于前面物体的速度,即v后>v前,否则无法实现碰撞。碰撞后,原来在前的物体的速度一定增大,且原来在前的物体的速度大于或等于原来在后的物体的速度v前′≥v后′。(2)如果碰前两物体是相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零。若碰 后沿同向运动,则前面物体的速度大于或等于后面物体 的速度,即v前≥v后。 “滑块—弹簧”模型1.模型图示2.模型特点(1)动量守恒:两个物体与弹簧相互作用的过程中,若系统所受外力的矢量和为零,则系统动量守恒.(2)机械能守恒:系统所受的外力为零或除弹簧弹力以外的内力不做功,系统机械能守恒.(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动能通常最小(相当于完全非弹性碰撞,两物体减少的动能转化为弹簧的弹性势能).(4)弹簧恢复原长时,弹性势能为零,系统动能最大(相当于刚完成弹性碰撞).例题1.(多选)如图甲所示,一个轻弹簧的两端与质量分别为m1和m2的两物块A、B相连接并静止在光滑的水平地面上.现使A以3 m/s的速度向B运动压缩弹簧,速度—时间图像如图乙,则有( )A.在t1、t3时刻两物块达到共同速度1 m/s,且弹簧都处于压缩状态B.从t3到t4时刻弹簧由压缩状态恢复原长C.两物块的质量之比为m1∶m2=1∶2D.在t2时刻A与B的动能之比Ek1∶Ek2=1∶8如图所示,质量分别为1 kg、3 kg的滑块A、B位于光滑水平面上,现使滑块A以4 m/s的速度向右运动,与左侧连有轻弹簧的滑块B发生相互作用.求二者在发生相互作用的过程中,(1)弹簧的最大弹性势能;(2)滑块B的最大速度.两物块A、B用轻弹簧相连,质量均为2 kg,初始时弹簧处于原长,A、B两物块都以v=6 m/s的速度在光滑的水平地面上运动,质量为4 kg的物块C静止在前方,如图所示.已知B与C碰撞后会粘在一起运动.在以后的运动中: (1)当弹簧的弹性势能最大时,物块A的速度为多大?(2)系统中弹性势能的最大值是多少?“滑块—斜(曲)面”模型1.模型图示2.模型特点(1)上升到最大高度:m与M具有共同水平速度v共,此时m的竖直速度vy=0.系统水平方向动量守恒,mv0=(M+m)v共;系统机械能守恒,mv02=(M+m)v共2+mgh,其中h为滑块上升的最大高度,不一定等于弧形轨道的高度(相当于完全非弹性碰撞,系统减少的动能转化为m的重力势能).(2)返回最低点:m与M分离点.水平方向动量守恒,mv0=mv1+Mv2;系统机械能守恒,mv02=mv12+Mv22(相当于完成了弹性碰撞).例题2.(多选)质量为M的带有光滑圆弧轨道的小车静止置于光滑水平面上,如图所示,一质量也为M的小球以速度v0水平冲上小车,到达某一高度后,小球又返回小车的左端,重力加速度为g,则( )A.小球以后将向左做平抛运动B.小球将做自由落体运动C.此过程小球对小车做的功为Mv02D.小球在圆弧轨道上上升的最大高度为 如图所示,光滑弧形滑块P锁定在光滑水平地面上,其弧形底端切线水平,小球Q(视为质点)的质量为滑块P的质量的一半,小球Q从滑块P顶端由静止释放,Q离开P时的动能为Ek1.现解除锁定,仍让Q从滑块顶端由静止释放,Q离开P时的动能为Ek2,Ek1和Ek2的比值为( )A. B. C. D.如图所示,半径均为R、质量均为M、内表面光滑的两个完全相同的圆槽A和B并排放在光滑的水平面上,图中a、c分别为A、B槽的最高点,b、b′分别为A、B槽的最低点,A槽的左端紧靠着竖直墙壁,一个质量为m的小球C从圆槽A顶端的a点无初速度释放.重力加速度为g,求: (1)小球C从a点运动到b点时的速度大小及A槽对地面的压力大小;(2)小球C在B槽内运动所能达到的最大高度;(3)B的最大速度的大小.“物体与物体”正碰模型1.碰撞遵守的规律(1)动量守恒,即p1+p2=p1′+p2′。(2)动能不增加,即Ek1+Ek2≥Ek1′+Ek2′或+≥+。(3)速度要符合情景:如果碰前两物体同向运动,则后面物体的速度必大于前面物体的速度,即v后>v前,否则无法实现碰撞。碰撞后,原来在前面的物体的速度一定增大,且原来在前面的物体的速度大于或等于原来在后面的物体的速度,即v前′≥v后′,否则碰撞没有结束。如果碰前两物体相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零。2.碰撞模型类型(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒。以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,有m1v1=m1v1′+m2v2′m1v=m1v1′2+m2v2′2解得v1′=,v2′=。结论:①当两球质量相等时,v1′=0,v2′=v1,两球碰撞后交换了速度。②当质量大的球碰质量小的球时,v1′>0,v2′>0,碰撞后两球都沿速度v1的方向运动。③当质量小的球碰质量大的球时,v1′<0,v2′>0,碰撞后质量小的球被反弹回来。④撞前相对速度与撞后相对速度大小相等。(2)完全非弹性碰撞①撞后共速。②有动能损失,且损失最多。例题3.甲、乙两个物块在光滑水平桌面上沿同一直线运动,甲追上乙,并与乙发生碰撞,碰撞前后甲、乙的速度随时间的变化如图中实线所示。已知甲的质量为1 kg,则碰撞过程中两物块损失的机械能为( )A.3 J B.4 JC.5 J D.6 J如图所示,光滑水平面上有A、B两物块,已知A物块的质量mA=2 kg,且以一定的初速度向右运动,与静止的物块B发生碰撞并一起运动,碰撞前后的位移-时间图像如图所示(规定向右为正方向),则碰撞后的速度及物体B的质量分别为( )A.2 m/s,5 kg B.2 m/s,3 kgC.3.5 m/s,2.86 kg D.3.5 m/s,0.86 kg 如图所示,在水平面上依次放置小物块A、C以及曲面劈B,其中A与C的质量相等均为m,曲面劈B的质量M=3m,曲面劈B的曲面下端与水平面相切,且劈足够高,各接触面均光滑。现让小物块C以水平速度v0向右运动,与A发生碰撞,碰撞后两个小物块黏在一起滑上曲面劈B。求:(1)碰撞过程中系统损失的机械能;(2)碰后物块A与C在曲面劈B上能够达到的最大高度。“滑块—木板”碰撞模型模型图示模型特点(1)若子弹未射穿木块或滑块未从木板上滑下,当两者速度相等时木块或木板的速度最大,两者的相对位移(子弹为射入木块的深度)取得极值(完全非弹性碰撞拓展模型)(2)系统的动量守恒,但机械能不守恒,摩擦力与两者相对位移的乘积等于系统减少的机械能(3)根据能量守恒,系统损失的动能ΔEk= Ek0,可以看出,子弹(或滑块)的质量越小,木块(或木板)的质量越大,动能损失越多(4)该类问题既可以从动量、能量角度求解,相当于非弹性碰撞拓展模型,也可以从力和运动的角度借助图示求解 例题4. 如图所示,质量M=1.0 kg的木板静止在光滑水平面上,质量m=0.495 kg的物块(可视为质点)放在木板的左端,物块与木板间的动摩擦因数μ=0.4。质量m0=0.005 kg的子弹以速度v0=300 m/s 沿水平方向射入物块并留在其中(子弹与物块作用时间极短),木板足够长,g取10 m/s2。求:(1)物块的最大速度v1;(2)木板的最大速度v2;(3)物块在木板上滑动的时间t。如图所示,质量m=1 kg的小物块静止放置在固定水平台的最左端,质量M=2 kg的小车左端紧靠平台静置在光滑水平地面上,平台、小车的长度均为0.6 m且上表面等高.现对小物块施加一水平向右的恒力F,使小物块开始运动,当小物块到达平台最右端时撤去恒力F,小物块刚好能够到达小车的右端.小物块大小不计,与平台间、小车间的动摩擦因数μ均为0.5,重力加速度g取10 m/s2,求:(1)小物块离开平台时速度的大小;(2)水平恒力F对小物块冲量的大小. 如图所示,厚度均匀的长木板C静止在光滑水平面上,木板上距左端L处放有小物块B。某时刻小物块A以某一初速度从左端滑上木板向右运动,已知A、B均可视为质点,A、B与C间的动摩擦因数均为μ,A、B、C三者的质量相等,重力加速度为g。(1)求A刚滑上木板时,A、B的加速度大小。(2)要使A、B不发生碰撞,求A的初速度应满足的条件。(3)若已知A的初速度为v0,且A、B之间发生弹性碰撞,碰撞前后A、B均沿同一直线运动。要保证A、B均不会从木板上掉下,木板的最小长度是多少? 1. (多选)如图所示,水平光滑轨道宽度和轻弹簧自然长度均为d,两小球质量分别为m1、m2,m1>m2,m2的左边有一固定挡板.由图示位置静止释放m1、m2,当m1与m2相距最近时m1的速度为v1,则在以后的运动过程中( )A.m1的最小速度是0B.m1的最小速度是v1C.m2的最大速度是v1D.m2的最大速度是v12. 如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3 m(h小于斜面体的高度).已知小孩与滑板的总质量为m1=30 kg,冰块的质量为m2=10 kg,小孩与滑板始终无相对运动.取重力加速度的大小g=10 m/s2.(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩?3. (多选)如图所示,质量分别为M和m0的两滑块甲、乙用轻弹簧连接,以恒定的速度v沿光滑水平面运动,与位于正前方的质量为m的静止滑块丙发生碰撞,碰撞时间极短.在甲、丙碰撞瞬间,下列情况可能发生的是( )A.甲、乙、丙的速度均发生变化,分别为v1、v2、v3,而且满足(M+m0)v=Mv1+m0v2+mv3B.乙的速度不变,甲和丙的速度变为v1和v2,而且满足Mv=Mv1+mv2C.乙的速度不变,甲和丙的速度都变为v′,且满足Mv=(M+m)v′D.甲、乙、丙速度均发生变化,甲、乙的速度都变为v1,丙的速度变为v2,且满足(M+m0)v=(M+m0)v1+mv24. (多选)如图所示,质量为M的楔形物体静止在光滑的水平地面上,其斜面光滑且足够长,与水平方向的夹角为θ.一个质量为m的小物块从斜面底端以初速度v0沿斜面向上开始运动.当小物块沿斜面向上运动到最高点时,速度大小为v,距地面高度为h,重力加速度为g,则下列关系式中正确的是( )A.mv0=(m+M)vB.mv0cos θ=(m+M)vC.m(v0sin θ)2=mghD.mv02=mgh+(m+M)v25. (多选)如图所示,光滑水平地面上有A、B两物体,质量都为m,B左端固定一个处在压缩状态的轻弹簧,轻弹簧被装置锁定,当弹簧再受到压缩时锁定装置会失效.A以速率v向右运动,当A撞上弹簧后,设弹簧始终不超过弹性限度,关于它们后续的运动过程,下列说法正确的是( )A.A物体最终会静止,B物体最终会以速率v向右运动B.A、B系统的总动量最终将大于mvC.A、B系统的总动能最终将大于mv2D.当弹簧的弹性势能最大时,A、B的总动能为mv26. (多选)如图所示,质量为M、带有半径为R的四分之一光滑圆弧轨道的滑块静置于光滑水平地面上,且圆弧轨道底端与水平面平滑连接,O为圆心.质量为m的小滑块(可视为质点)以水平向右的初速度v0冲上圆弧轨道,恰好能滑到圆弧轨道最高点,已知M=2m,则下列判断正确的是( )A.小滑块冲上轨道的过程,小滑块机械能不守恒B.小滑块冲上轨道的过程,小滑块与带有圆弧轨道的滑块组成的系统动量守恒C.小滑块冲到轨道的最高点时,带有圆弧轨道的滑块速度最大且大小为v0D.小滑块脱离圆弧轨道时,速度大小为v0 7. (多选)如图甲所示,在光滑水平面上,轻质弹簧一端固定,物体A以速度v0向右运动压缩弹簧,测得弹簧的最大压缩量为x.现让弹簧一端连接另一质量为m的物体B(如图乙所示),物体A以2v0的速度向右压缩弹簧,测得弹簧的最大压缩量仍为x,则( )A.A物体的质量为3mB.A物体的质量为2mC.弹簧压缩最大时的弹性势能为mv02D.弹簧压缩最大时的弹性势能为mv028. 如图所示,光滑的水平桌面上有等大的质量分别为M=0.4 kg、m=0.1 kg的两个小球,中间夹着一个被压缩的具有Ep=4.0 J 弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态,现突然释放弹簧,球m脱离弹簧滑向与水平相切的竖直放置的光滑半圆形轨道,到达最高点B时小球对轨道的压力为3 N,g取10 m/s2,求:(1)两小球离开弹簧时的速度大小;(2)半圆形轨道半径。9. 在光滑水平地面上放有一质量M=3 kg带四分之一光滑圆弧形槽的小车,质量为m=2 kg的小球以速度v0=5 m/s沿水平槽口滑上圆弧形槽槽口距地面的高度h=0.8 m,重力加速度g取10 m/s2。求:(1)小球从槽口开始运动到最高点(未离开小车)的过程中,小球对小车做的功W;(2)小球落地瞬间,小车与小球间的水平间距L。10.如图所示,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,该整体静止放在离地面高为H=5 m的光滑水平桌面上.现有一滑块A从光滑曲面上离桌面h=1.8 m高处由静止开始滑下,与滑块B发生碰撞并粘在一起压缩弹簧推动滑块C向前运动,经过一段时间,滑块C脱离弹簧,继续在水平桌面上匀速运动一段距离后从桌面边缘飞出.已知mA=1 kg,mB=2 kg,mC=3 kg,取g=10 m/s2,不计空气阻力.求:(1)滑块A与滑块B碰撞结束瞬间的速度大小;(2)被压缩弹簧的最大弹性势能;(3)滑块C落地点与桌面边缘的水平距离.
相关试卷
这是一份2024届高考物理一轮复习——6.3“碰撞类”模型问题讲义,文件包含63“碰撞类”模型问题答案docx、63“碰撞类”模型问题docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
这是一份2024年新高考物理一轮复习考点题型归纳 “碰撞类”模型问题(原卷版+解析版),共41页。
这是一份(新高考)高考物理一轮复习讲义 第6章 专题强化七 “碰撞类”模型问题(含解析),共11页。