高中数学人教A版 (2019)必修 第二册第十章 概率10.3 频率与概率当堂检测题
展开
这是一份高中数学人教A版 (2019)必修 第二册第十章 概率10.3 频率与概率当堂检测题,文件包含1032随机模拟练案解析版-2022-2023学年高一数学同步备课人教A版2019必修第二册docx、1032随机模拟练案原卷版-2022-2023学年高一数学同步备课人教A版2019必修第二册docx等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。
班级: 姓名: 日期: 《10.3.2随机模拟》练案 1.用随机模拟方法得到的频率( )A.大于概率 B.小于概率 C.等于概率 D.是概率的近似值【答案】D【解析】当实验数据越多频率就越接近概率用随机模拟方法得到的频率,数据是有限的,是接近概率.故选D.2.(多选题)下列关于随机数的说法,错误的是( )A.计算器只能产生(0,1)之间的随机数B.计算机能产生指定两个整数之间的取整数值的随机数C.计算器或计算机产生的随机数是完全等可能的D.计算器或计算机产生的随机数是伪随机数【答案】AC【解析】A项,计算器也可以产生a~b上的整数随机数;C项,计算器或计算机产生的随机数是伪随机数,不能保证等可能.3.(2022山东淄博)某种心脏手术成功率为0.9,现采用随机模拟方法估计“3例心脏手术全部成功”的概率.先利用计算器或计算机产生09之间取整数值的随机数,由于成功率是0.9,故我们用0表示手术不成功,1,2,3,4,5,6,7,8,9表示手术成功,再以每3个随机数为一组,作为3例手术的结果.经随机模拟产生如下10组随机数:812,832,569,683,271,989,730,537,925,907,由此估计“3例心脏手术全部成功”的概率为( )A.0.9 B.0.8 C.0.7 D.0.6【答案】B【解析】由题意,10组随机数:812,832,569,683,271,989,730,537,925,907,表示“3例心脏手术全部成功”的有:812,832,569,683,271,989, 537,925,故8个,故估计“3例心脏手术全部成功”的概率为.故选B.4.(2021·河北承德第一中学 )已知某射击运动员,每次击中目标的概率都是.现采用随机模拟的方法估计该运动员射击4次至少击中3次的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数: 5727 0293 7140 9857 0347 4373 8636 9647 1417 46980371 6233 2616 8045 6011 3661 9597 7424 6710 4281据此估计,该射击运动员射击4次至少击中3次的概率为( )A.0.85 B.0.8192 C.0.8 D.0.75【答案】D【解析】由于组数,有组是至少命中次的,故概率为.5.通过模拟试验产生了20组随机数:6830 3013 7055 7430 7740 4422 78842604 3346 0952 6807 9706 5774 57256576 5929 9768 6071 9138 6754如果恰好有三个数在1,2,3,4,5,6中,表示恰好有三次击中目标,则四次射击中恰好有三次击中目标的概率约为________,四次射击全都击中目标的概率约为________.【答案】0.25 0.1【解析】表示三次击中目标的分别是3013,2604,5725,6576,6754,共5组数,而随机数总共20组,所以所求的概率近似为=0.25.四次全击中有4422,3346两组,概率约为==0.1.6.袋子中有四个小球,分别写有“中、华、民、族”四个字,有放回地从中任取一个小球,直到“中”“华”两个字都取到才停止.用随机模拟的方法估计恰好抽取三次停止的概率,利用电脑随机产生0到3之间取整数值的随机数,分别用代表“中、华、民、族”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:由此可以估计,恰好抽取三次就停止的概率为____________.【答案】【解析】由随机产生的随机数可知恰好抽取三次就停止的有,共4组随机数,所以恰好抽取三次就停止的概率约为.7.天气预报说,在接下来的一个星期里,每天涨潮的概率为20%,设计一个符合要求的模拟试验:利用计算机产生0~9之间取整数值的随机数,用1,2表示涨潮,用其他数字表示不涨潮,这样体现了涨潮的概率是20%,因为时间是一周,所以每7个随机数作为一组,假设产生20组随机数是:则下个星期恰有2天涨潮的概率为___________.【答案】.【解析】产生20组随机数相当于做了20次试验,在这组数中,如果恰有两个是1或2,就表示恰有两天涨潮,它们分别是3142486,5241478,3215687,1258697,共有4组数,于是一周内恰有两天涨潮的概率近似值为.8.某篮球爱好者做投篮练习,假设其每次投篮命中的概率是60%,若该篮球爱好者连续投篮4次,求至少投中3次的概率.用随机模拟的方法估计上述概率.【解】利用计算机或计算器产生0到9之间取整数值的随机数,用1,2,3,4,5,6表示投中,用7,8,9,0表示未投中,这样可以体现投中的概率是60%,因为投篮4次,所以每4个随机数作为一组.例如5727,7895,0123,…,4560,4581,4698,共100组这样的随机数,若所有数组中没有7,8,9,0或只有7,8,9,0中的一个数的数组的个数为n,则至少投中3次的概率近似值为. 9.某种心脏手术,成功率为0.6,现采用随机模拟方法估计“3例心脏手术全部成功”的概率:先利用计算器或计算机产生0~9之间取整数值的随机数,由于成功率是0.6,故我们用0,1,2,3表示手术不成功,4,5,6,7,8,9表示手术成功;再以每3个随机数为一组,作为3例手术的结果.经随机模拟产生如下10组随机数:812 832 569 683 271 989 730 537 925 907由此估计“3例心脏手术全部成功”的概率约为( )A.0.2 B.0.3 C.0.4 D.0.5【答案】A【解析】由10组随机数知,4~9中恰有三个的随机数有569,989两组,故所求的概率约为=0.2.10.从你所在班级任意选出6名同学,调查他们的出生月份,假设出生在一月,二月……十二月是等可能的. 设事件A=“至少有两人出生月份相同”,设计一种试验方法,模拟20次,估计事件A发生的概率【解】(方法1)根据假设,每个人的出生月份在12个月中是等可能的,而且相互之间没有影响,所以观察6个人的出生月份可以看成可重复试验,因此可以构建如下有放回摸球试验进行模拟:在袋子中装入编号为1,2,…,12的12个球,这些球除编号外没有什么差别. 有放回地随机从袋中摸6次球,得到6个数代表6个人的出生月份,这就完成了一次模拟试验. 如果这6个数中至少有2个相同,表示事件A发生了,重复以上模拟试验20次,就可以统计出事件A发生的频率(方法2)利用电子表格软件模拟试验,在A1,B1,C1,D1,E1,F1单元格分别输入“=RANDBETWEEN(1,12)”,得到6个数,代表6个人的出生月份,完成一次模拟试验,选中A1,B1,C1,D1,E1,F1单元格,将鼠标指向右下角的黑点,按住鼠标左键拖动到第20行,相当于做20次重复试验. 统计其中有相同数的频率,得到事件A的概率的估计值。11. 一个学生在一次竞赛中要回答的8道题是这样产生的:从15道物理题中随机抽取3道;从20道化学题中随机抽取3道;从12道生物题中随机抽取2道,使用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为1~15,化学题的编号为16~35,生物题的编号为36~47).解 利用计算器的随机函数RANDI(1,15)产生3个不同的1~15之间的整数随机数(如果有一个重复,则重新产生一个);再利用计算器的随机函数RANDI(16,35)产生3个不同的16~35之间的整数随机数(如果有一个重复,则重新产生一个);再用计算器的随机函数RANDI(36,47)产生2个不同的36~47之间的整数随机数(如果有一个重复,则重新产生一个),这样就得到8道题的序号.12.一份测试题包括6道选择题,每题四个选项且只有一个选项是正确的,如果一个学生对每一道题都随机猜一个答案,用随机模拟方法估计该学生至少答对3道题的概率.(已知计算机或计算器做模拟试验可以模拟每次猜对的概率是25%)【解】通过设计模拟试验的方法来解决问题,利用计算机或计算器可以产生0到3之间取整数值的随机数,用0表示猜的选项正确,1,2,3表示猜的选项错误,这样可以体现猜对的概率是25%,因为共猜6道题,所以每6个随机数作为一组.例如,产生25组随机数:330130 302220 133020 022011 313121 222330 231022 001003 213322 030032 100211 022210 231330 321202 031210 232111 210010 212020 230331 112000 102330 200313 303321 012033 321230就相当于做了25次试验,在每组数中,如果恰有3个或3个以上的数是0,则表示至少答对3道题,它们分别是001003,030032,210010,112000,即共有4组数,得到该同学6道选择题至少答对3道题的概率近似为=0.16. 13.甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,试用随机模拟的方法求乙获胜的概率.【解】利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数034 743 738 636 964 736 614 698 637 162332 616 804 560 111 410 959 774 246 762428 114 572 042 533 237 322 707 360 751,就相当于做了30次试验.如果恰有2个或3个数在6,7,8,9中,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707,共11个.所以采用三局两胜制,乙获胜的概率约为≈0.367.14.种植某种树苗,成活率为0.9,请采用随机模拟的方法估计该树苗种植5棵恰好4棵成活的概率.写出模拟试验的过程,并求出所求概率.【解】先由计算机随机函数RANDBETWEEN(0,9),或计算器的随机函数RANDI(0,9)产生0到9之间取整数值的随机数,指定1至9的数字代表成活,0代表不成活,再以每5个随机数为一组代表5次种植的结果.经随机模拟产生如下30组随机数:69801 66097 77124 22961 74235 3151629747 24945 57558 65258 74130 2322437445 44344 33315 27120 21782 5855561017 45241 44134 92201 70362 8300594976 56173 34783 16624 30344 01117这就相当于做了30次试验,在这些数组中,如果恰有一个0,则表示恰有4棵成活,共有9组这样的数,于是得到种植5棵这样的树苗恰有4棵成活的概率近似为=0.3.
相关试卷
这是一份高中10.2 事件的相互独立性当堂达标检测题,文件包含1012事件的关系与运算练案解析版-2022-2023学年高一数学同步备课人教A版2019必修第二册docx、1012事件的关系与运算练案原卷版-2022-2023学年高一数学同步备课人教A版2019必修第二册docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。
这是一份高中数学人教A版 (2019)必修 第二册10.1 随机事件与概率精练,文件包含1011有限样本空间与随机事件练案解析版-2022-2023学年高一数学同步备课人教A版2019必修第二册docx、1011有限样本空间与随机事件练案原卷版-2022-2023学年高一数学同步备课人教A版2019必修第二册docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。
这是一份高中数学人教A版 (2019)必修 第二册9.1 随机抽样课后练习题,文件包含913获取数据的途径练案解析版-2022-2023学年高一数学同步备课人教A版2019必修第二册docx、913获取数据的途径练案原卷版-2022-2023学年高一数学同步备课人教A版2019必修第二册docx等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。