![第1课时 两角和与差的正弦、余弦公式第1页](http://img-preview.51jiaoxi.com/3/3/13543026/12/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 两角和与差的正弦、余弦公式第2页](http://img-preview.51jiaoxi.com/3/3/13543026/12/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 两角和与差的正弦、余弦公式第3页](http://img-preview.51jiaoxi.com/3/3/13543026/12/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 两角和与差的正弦、余弦公式第4页](http://img-preview.51jiaoxi.com/3/3/13543026/12/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 两角和与差的正弦、余弦公式第5页](http://img-preview.51jiaoxi.com/3/3/13543026/12/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 两角和与差的正弦、余弦公式第6页](http://img-preview.51jiaoxi.com/3/3/13543026/12/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 两角和与差的正弦、余弦公式第7页](http://img-preview.51jiaoxi.com/3/3/13543026/12/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 两角和与差的正弦、余弦公式第8页](http://img-preview.51jiaoxi.com/3/3/13543026/12/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 正弦函数、余弦函数的周期性和奇偶性第1页](http://img-preview.51jiaoxi.com/3/3/13543026/0/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 正弦函数、余弦函数的周期性和奇偶性第2页](http://img-preview.51jiaoxi.com/3/3/13543026/0/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 正弦函数、余弦函数的周期性和奇偶性第3页](http://img-preview.51jiaoxi.com/3/3/13543026/0/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 正弦函数、余弦函数的周期性和奇偶性第4页](http://img-preview.51jiaoxi.com/3/3/13543026/0/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 正弦函数、余弦函数的周期性和奇偶性第5页](http://img-preview.51jiaoxi.com/3/3/13543026/0/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 正弦函数、余弦函数的周期性和奇偶性第6页](http://img-preview.51jiaoxi.com/3/3/13543026/0/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 正弦函数、余弦函数的周期性和奇偶性第7页](http://img-preview.51jiaoxi.com/3/3/13543026/0/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 正弦函数、余弦函数的周期性和奇偶性第8页](http://img-preview.51jiaoxi.com/3/3/13543026/0/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 正弦函数、余弦函数的单调性与最值第1页](http://img-preview.51jiaoxi.com/3/3/13543026/1/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 正弦函数、余弦函数的单调性与最值第2页](http://img-preview.51jiaoxi.com/3/3/13543026/1/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 正弦函数、余弦函数的单调性与最值第3页](http://img-preview.51jiaoxi.com/3/3/13543026/1/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 正弦函数、余弦函数的单调性与最值第4页](http://img-preview.51jiaoxi.com/3/3/13543026/1/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 正弦函数、余弦函数的单调性与最值第5页](http://img-preview.51jiaoxi.com/3/3/13543026/1/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 正弦函数、余弦函数的单调性与最值第6页](http://img-preview.51jiaoxi.com/3/3/13543026/1/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 正弦函数、余弦函数的单调性与最值第7页](http://img-preview.51jiaoxi.com/3/3/13543026/1/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 正弦函数、余弦函数的单调性与最值第8页](http://img-preview.51jiaoxi.com/3/3/13543026/1/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 两角和与差的正切公式及和角、差角公式的综合应用第1页](http://img-preview.51jiaoxi.com/3/3/13543026/11/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 两角和与差的正切公式及和角、差角公式的综合应用第2页](http://img-preview.51jiaoxi.com/3/3/13543026/11/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 两角和与差的正切公式及和角、差角公式的综合应用第3页](http://img-preview.51jiaoxi.com/3/3/13543026/11/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 两角和与差的正切公式及和角、差角公式的综合应用第4页](http://img-preview.51jiaoxi.com/3/3/13543026/11/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 两角和与差的正切公式及和角、差角公式的综合应用第5页](http://img-preview.51jiaoxi.com/3/3/13543026/11/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 两角和与差的正切公式及和角、差角公式的综合应用第6页](http://img-preview.51jiaoxi.com/3/3/13543026/11/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 两角和与差的正切公式及和角、差角公式的综合应用第7页](http://img-preview.51jiaoxi.com/3/3/13543026/11/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 两角和与差的正切公式及和角、差角公式的综合应用第8页](http://img-preview.51jiaoxi.com/3/3/13543026/11/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 二倍角的正弦、余弦和正切公式第1页](http://img-preview.51jiaoxi.com/3/3/13543026/13/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 二倍角的正弦、余弦和正切公式第2页](http://img-preview.51jiaoxi.com/3/3/13543026/13/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 二倍角的正弦、余弦和正切公式第3页](http://img-preview.51jiaoxi.com/3/3/13543026/13/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 二倍角的正弦、余弦和正切公式第4页](http://img-preview.51jiaoxi.com/3/3/13543026/13/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 二倍角的正弦、余弦和正切公式第5页](http://img-preview.51jiaoxi.com/3/3/13543026/13/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 二倍角的正弦、余弦和正切公式第6页](http://img-preview.51jiaoxi.com/3/3/13543026/13/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 二倍角的正弦、余弦和正切公式第7页](http://img-preview.51jiaoxi.com/3/3/13543026/13/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 二倍角的正弦、余弦和正切公式第8页](http://img-preview.51jiaoxi.com/3/3/13543026/13/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.6.1—5.6.2第1页](http://img-preview.51jiaoxi.com/3/3/13543026/8/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.6.1—5.6.2第2页](http://img-preview.51jiaoxi.com/3/3/13543026/8/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.6.1—5.6.2第3页](http://img-preview.51jiaoxi.com/3/3/13543026/8/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.6.1—5.6.2第4页](http://img-preview.51jiaoxi.com/3/3/13543026/8/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.6.1—5.6.2第5页](http://img-preview.51jiaoxi.com/3/3/13543026/8/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.6.1—5.6.2第6页](http://img-preview.51jiaoxi.com/3/3/13543026/8/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.6.1—5.6.2第7页](http://img-preview.51jiaoxi.com/3/3/13543026/8/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.6.1—5.6.2第8页](http://img-preview.51jiaoxi.com/3/3/13543026/8/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.1.1 任意角第1页](http://img-preview.51jiaoxi.com/3/3/13543026/9/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.1.1 任意角第2页](http://img-preview.51jiaoxi.com/3/3/13543026/9/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.1.1 任意角第3页](http://img-preview.51jiaoxi.com/3/3/13543026/9/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.1.1 任意角第4页](http://img-preview.51jiaoxi.com/3/3/13543026/9/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.1.1 任意角第5页](http://img-preview.51jiaoxi.com/3/3/13543026/9/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.1.1 任意角第6页](http://img-preview.51jiaoxi.com/3/3/13543026/9/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.1.1 任意角第7页](http://img-preview.51jiaoxi.com/3/3/13543026/9/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.1.1 任意角第8页](http://img-preview.51jiaoxi.com/3/3/13543026/9/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第1页](http://img-preview.51jiaoxi.com/3/3/13543026/15/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第2页](http://img-preview.51jiaoxi.com/3/3/13543026/15/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第3页](http://img-preview.51jiaoxi.com/3/3/13543026/15/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第4页](http://img-preview.51jiaoxi.com/3/3/13543026/15/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第5页](http://img-preview.51jiaoxi.com/3/3/13543026/15/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第6页](http://img-preview.51jiaoxi.com/3/3/13543026/15/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第7页](http://img-preview.51jiaoxi.com/3/3/13543026/15/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第8页](http://img-preview.51jiaoxi.com/3/3/13543026/15/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.3 诱导公式第1页](http://img-preview.51jiaoxi.com/3/3/13543026/7/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.3 诱导公式第2页](http://img-preview.51jiaoxi.com/3/3/13543026/7/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.3 诱导公式第3页](http://img-preview.51jiaoxi.com/3/3/13543026/7/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.3 诱导公式第4页](http://img-preview.51jiaoxi.com/3/3/13543026/7/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.3 诱导公式第5页](http://img-preview.51jiaoxi.com/3/3/13543026/7/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.3 诱导公式第6页](http://img-preview.51jiaoxi.com/3/3/13543026/7/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.3 诱导公式第7页](http://img-preview.51jiaoxi.com/3/3/13543026/7/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.3 诱导公式第8页](http://img-preview.51jiaoxi.com/3/3/13543026/7/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.2.1 三角函数的概念第1页](http://img-preview.51jiaoxi.com/3/3/13543026/5/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.2.1 三角函数的概念第2页](http://img-preview.51jiaoxi.com/3/3/13543026/5/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.2.1 三角函数的概念第3页](http://img-preview.51jiaoxi.com/3/3/13543026/5/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.2.1 三角函数的概念第4页](http://img-preview.51jiaoxi.com/3/3/13543026/5/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.2.1 三角函数的概念第5页](http://img-preview.51jiaoxi.com/3/3/13543026/5/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.2.1 三角函数的概念第6页](http://img-preview.51jiaoxi.com/3/3/13543026/5/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.2.1 三角函数的概念第7页](http://img-preview.51jiaoxi.com/3/3/13543026/5/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.2.1 三角函数的概念第8页](http://img-preview.51jiaoxi.com/3/3/13543026/5/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.2.2 同角三角函数的基本关系第1页](http://img-preview.51jiaoxi.com/3/3/13543026/6/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.2.2 同角三角函数的基本关系第2页](http://img-preview.51jiaoxi.com/3/3/13543026/6/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.2.2 同角三角函数的基本关系第3页](http://img-preview.51jiaoxi.com/3/3/13543026/6/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.2.2 同角三角函数的基本关系第4页](http://img-preview.51jiaoxi.com/3/3/13543026/6/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.2.2 同角三角函数的基本关系第5页](http://img-preview.51jiaoxi.com/3/3/13543026/6/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.2.2 同角三角函数的基本关系第6页](http://img-preview.51jiaoxi.com/3/3/13543026/6/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.2.2 同角三角函数的基本关系第7页](http://img-preview.51jiaoxi.com/3/3/13543026/6/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.2.2 同角三角函数的基本关系第8页](http://img-preview.51jiaoxi.com/3/3/13543026/6/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.4.1 正弦函数、余弦函数的图象第1页](http://img-preview.51jiaoxi.com/3/3/13543026/2/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.4.1 正弦函数、余弦函数的图象第2页](http://img-preview.51jiaoxi.com/3/3/13543026/2/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.4.1 正弦函数、余弦函数的图象第3页](http://img-preview.51jiaoxi.com/3/3/13543026/2/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.4.1 正弦函数、余弦函数的图象第4页](http://img-preview.51jiaoxi.com/3/3/13543026/2/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.4.1 正弦函数、余弦函数的图象第5页](http://img-preview.51jiaoxi.com/3/3/13543026/2/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.4.1 正弦函数、余弦函数的图象第6页](http://img-preview.51jiaoxi.com/3/3/13543026/2/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.4.1 正弦函数、余弦函数的图象第7页](http://img-preview.51jiaoxi.com/3/3/13543026/2/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.4.1 正弦函数、余弦函数的图象第8页](http://img-preview.51jiaoxi.com/3/3/13543026/2/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.5.2 简单的三角恒等变换第1页](http://img-preview.51jiaoxi.com/3/3/13543026/14/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.5.2 简单的三角恒等变换第2页](http://img-preview.51jiaoxi.com/3/3/13543026/14/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.5.2 简单的三角恒等变换第3页](http://img-preview.51jiaoxi.com/3/3/13543026/14/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.5.2 简单的三角恒等变换第4页](http://img-preview.51jiaoxi.com/3/3/13543026/14/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.5.2 简单的三角恒等变换第5页](http://img-preview.51jiaoxi.com/3/3/13543026/14/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.5.2 简单的三角恒等变换第6页](http://img-preview.51jiaoxi.com/3/3/13543026/14/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.5.2 简单的三角恒等变换第7页](http://img-preview.51jiaoxi.com/3/3/13543026/14/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.5.2 简单的三角恒等变换第8页](http://img-preview.51jiaoxi.com/3/3/13543026/14/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.7 三角函数的应用第1页](http://img-preview.51jiaoxi.com/3/3/13543026/4/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.7 三角函数的应用第2页](http://img-preview.51jiaoxi.com/3/3/13543026/4/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.7 三角函数的应用第3页](http://img-preview.51jiaoxi.com/3/3/13543026/4/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.7 三角函数的应用第4页](http://img-preview.51jiaoxi.com/3/3/13543026/4/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.7 三角函数的应用第5页](http://img-preview.51jiaoxi.com/3/3/13543026/4/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.7 三角函数的应用第6页](http://img-preview.51jiaoxi.com/3/3/13543026/4/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.7 三角函数的应用第7页](http://img-preview.51jiaoxi.com/3/3/13543026/4/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.7 三角函数的应用第8页](http://img-preview.51jiaoxi.com/3/3/13543026/4/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.1.2 弧度制第1页](http://img-preview.51jiaoxi.com/3/3/13543026/10/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.1.2 弧度制第2页](http://img-preview.51jiaoxi.com/3/3/13543026/10/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.1.2 弧度制第3页](http://img-preview.51jiaoxi.com/3/3/13543026/10/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.1.2 弧度制第4页](http://img-preview.51jiaoxi.com/3/3/13543026/10/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.1.2 弧度制第5页](http://img-preview.51jiaoxi.com/3/3/13543026/10/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.1.2 弧度制第6页](http://img-preview.51jiaoxi.com/3/3/13543026/10/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.1.2 弧度制第7页](http://img-preview.51jiaoxi.com/3/3/13543026/10/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.1.2 弧度制第8页](http://img-preview.51jiaoxi.com/3/3/13543026/10/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.4.3 正切函数的性质与图象第1页](http://img-preview.51jiaoxi.com/3/3/13543026/3/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.4.3 正切函数的性质与图象第2页](http://img-preview.51jiaoxi.com/3/3/13543026/3/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.4.3 正切函数的性质与图象第3页](http://img-preview.51jiaoxi.com/3/3/13543026/3/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.4.3 正切函数的性质与图象第4页](http://img-preview.51jiaoxi.com/3/3/13543026/3/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.4.3 正切函数的性质与图象第5页](http://img-preview.51jiaoxi.com/3/3/13543026/3/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.4.3 正切函数的性质与图象第6页](http://img-preview.51jiaoxi.com/3/3/13543026/3/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.4.3 正切函数的性质与图象第7页](http://img-preview.51jiaoxi.com/3/3/13543026/3/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![5.4.3 正切函数的性质与图象第8页](http://img-preview.51jiaoxi.com/3/3/13543026/3/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
所属成套资源:新人教a版数学必修第一册PPT课件全册
人教A版高中数学必修第一册第五章三角函数PPT课件
展开这是一份人教A版高中数学必修第一册第五章三角函数PPT课件,文件包含561562pptx、第2课时正弦函数余弦函数的单调性与最值pptx、511任意角pptx、章末总结pptx、53诱导公式pptx、521三角函数的概念pptx、522同角三角函数的基本关系pptx、第2课时两角和与差的正切公式及和角差角公式的综合应用pptx、第1课时两角和与差的正弦余弦公式pptx、541正弦函数余弦函数的图象pptx、552简单的三角恒等变换pptx、57三角函数的应用pptx、第1课时正弦函数余弦函数的周期性和奇偶性pptx、512弧度制pptx、543正切函数的性质与图象pptx、第3课时二倍角的正弦余弦和正切公式pptx等16份课件配套教学资源,其中PPT共662页, 欢迎下载使用。
5.4.2 正弦函数、余弦函数的性质第1课时 正弦函数、余弦函数的周期性和奇偶性知识探究·素养启迪课堂探究·素养培育知识探究·素养启迪如果现在是早上9点,问:24小时以后是几点?你会毫不犹豫地回答:还是早上9点.因为你很清楚,0点、1点、2点、3点……23点,每隔24小时就重复出现一次.如果今天是星期一,问.7天以后是星期几?你也会回答:还是星期一.因为你很清楚,星期一、星期二……星期日,每隔7天就重复出现一次.相同的间隔重复出现的现象称为周期现象,如“24小时1天”“7天1星期”就是我们所熟悉的周期现象.自然界中有很多周期现象,如日出日落、月圆月缺、四季交替等.探究:正弦函数、余弦函数是否有这样的周期性呢?情境导入提示:有.正弦函数、余弦函数的周期性与奇偶性[问题1-1] 对于正弦函数y=sin x,当x∈[0,2π]时与当x∈[2π,4π]时图象有什么区别?对于余弦函数y=cos x呢?提示:它们形状和大小一样,只是位置不同.[问题1-2] 观察正弦曲线和余弦曲线,可以看到正弦曲线关于原点O对称,余弦曲线关于y轴对称.这个事实,可以直观地看出y=sin x,y=cos x具有什么性质?提示:正弦函数y=sin x是R上的奇函数,余弦函数y=cos x是R上的偶函数.知识探究梳理 正弦函数、余弦函数的周期性与奇偶性(1)周期函数①周期函数的概念非零f(x+T)=f(x)周期函数周期②最小正周期正数正数(2)正、余弦函数图象与性质[-1,1][-1,1]2π2π奇偶小试身手C (D)2πB 解析:f(-x)=-xsin(-x)=-x(-sin x)=xsin x=f(x),所以f(x)=xsin x为偶函数,不是奇函数.故选B.答案:±π答案:原点4.函数y=4sin(2x+π)的图象关于 对称. 解析:y=4sin(2x+π)=-4sin 2x,易证函数为奇函数,所以其图象关于原点对称.课堂探究·素养培育探究点一正、余弦函数的周期性(2)f(x)=|sin x|.解:(2)法一 (定义法)因为f(x)=|sin x|,所以f(x+π)=|sin(x+π)|=|sin x|=f(x),所以f(x)的周期为π.法二 (图象法)因为函数y=|sin x|的图象如图所示.由图象可知T=π.(2)作出y=cos |x|的图象如图所示.易知函数的周期为T=2π.方法总结求三角函数周期的方法(1)定义法:即利用周期函数的定义求解.(3)观察法:即通过观察函数图象求其周期.易错警示探究点二正、余弦函数的奇偶性解:(1)函数的定义域为R,又f(-x)=|sin(-x)|+cos(-x)=|sin x|+cos x=f(x),所以此函数是偶函数.(2)由1-cos x≥0且cos x-1≥0,得cos x=1,从而x=2kπ,k∈Z,此时f(x)=0,故该函数既是奇函数又是偶函数.方法总结(1)判断函数的奇偶性时,必须先检查定义域是否关于原点对称,如果是,再验证f(-x)是否等于-f(x)或f(x),进而判断函数的奇偶性;如果不是,则该函数必为非奇非偶函数.探究点三正、余弦函数的对称性方法总结备用例题 课堂达标C D B C 点击进入 课时训练·分层突破