|试卷下载
搜索
    上传资料 赚现金
    江苏省淮安市金湖县2021-2022学年中考数学模拟预测题含解析
    立即下载
    加入资料篮
    江苏省淮安市金湖县2021-2022学年中考数学模拟预测题含解析01
    江苏省淮安市金湖县2021-2022学年中考数学模拟预测题含解析02
    江苏省淮安市金湖县2021-2022学年中考数学模拟预测题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省淮安市金湖县2021-2022学年中考数学模拟预测题含解析

    展开
    这是一份江苏省淮安市金湖县2021-2022学年中考数学模拟预测题含解析,共20页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.3的相反数是( )
    A.﹣3 B.3 C. D.﹣
    2.下列计算正确的是(  )
    A.x2+x3=x5 B.x2•x3=x5 C.(﹣x2)3=x8 D.x6÷x2=x3
    3.2014 年底,国务院召开了全国青少年校园足球工作会议,明确由教育部正式牵头负 责校园足球工作.2018 年 2 月 1 日,教育部第三场新春系列发布会上,王登峰司长总 结前三年的工作时提到:校园足球场地,目前全国校园里面有 5 万多块,到 2020 年 要达到 85000 块.其中 85000 用科学记数法可表示为( )
    A.0.85 ´ 105 B.8.5 ´ 104 C.85 ´ 10-3 D.8.5 ´ 10-4
    4.在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是(  )

    A.a<0,b<0,c>0
    B.﹣=1
    C.a+b+c<0
    D.关于x的方程ax2+bx+c=﹣1有两个不相等的实数根
    5.下列关于x的方程中,属于一元二次方程的是(  )
    A.x﹣1=0 B.x2+3x﹣5=0 C.x3+x=3 D.ax2+bx+c=0
    6.光年天文学中的距离单位,1光年大约是9500000000000km,用科学记数法表示为  
    A. B. C. D.
    7.已知函数,则使y=k成立的x值恰好有三个,则k的值为( )
    A.0 B.1 C.2 D.3
    8.如果关于x的方程x2﹣x+1=0有实数根,那么k的取值范围是(  )
    A.k>0 B.k≥0 C.k>4 D.k≥4
    9.如图,AB为⊙O的直径,C为⊙O上的一动点(不与A、B重合),CD⊥AB于D,∠OCD的平分线交⊙O于P,则当C在⊙O上运动时,点P的位置(  )

    A.随点C的运动而变化
    B.不变
    C.在使PA=OA的劣弧上
    D.无法确定
    10.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B在围成的正方体中的距离是(  )

    A.0 B.1 C. D.
    11.如图,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束. 设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是


    A.① B.④ C.②或④ D.①或③
    12.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是( )
    A.平均数 B.标准差 C.中位数 D.众数
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在直角坐标平面xOy中,点A坐标为,,,AB与x轴交于点C,那么AC:BC的值为______.

    14.点A(x1,y1)、B(x1,y1)在二次函数y=x1﹣4x﹣1的图象上,若当1<x1<1,3<x1<4时,则y1与y1的大小关系是y1_____y1.(用“>”、“<”、“=”填空)
    15.如图,在梯形ACDB中,AB∥CD,∠C+∠D=90°,AB=2,CD=8,E,F分别是AB,CD的中点,则EF=_____.

    16.已知关于x的方程x2﹣2x+n=1没有实数根,那么|2﹣n|﹣|1﹣n|的化简结果是_____.
    17.据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为_____人次.
    18.计算:×(﹣2)=___________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.
    若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.
    20.(6分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).
    21.(6分)已知抛物线y=ax2+(3b+1)x+b﹣3(a>0),若存在实数m,使得点P(m,m)在该抛物线上,我们称点P(m,m)是这个抛物线上的一个“和谐点”.
    (1)当a=2,b=1时,求该抛物线的“和谐点”;
    (2)若对于任意实数b,抛物线上恒有两个不同的“和谐点”A、B.
    ①求实数a的取值范围;
    ②若点A,B关于直线y=﹣x﹣(+1)对称,求实数b的最小值.
    22.(8分)已知:a+b=4
    (1)求代数式(a+1)(b+1)﹣ab值;
    (2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.
    23.(8分)甲、乙、丙3名学生各自随机选择到A、B2个书店购书.
    (1)求甲、乙2名学生在不同书店购书的概率;
    (2)求甲、乙、丙3名学生在同一书店购书的概率.
    24.(10分)已知关于x的方程x2-(m+2)x+(2m-1)=0。求证:方程恒有两个不相等的实数根;若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。
    25.(10分)某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,乙种纪念品6件,需要800元.
    (1)求购进甲、乙两种纪念品每件各需多少元?
    (2)若该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件.考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案7
    (3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元.在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?
    26.(12分)某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:
    (1)这次知识竞赛共有多少名学生?
    (2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;
    (3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率.

    27.(12分)如图,已知函数(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.
    若AC=OD,求a、b的值;若BC∥AE,求BC的长.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    试题分析:根据相反数的概念知:1的相反数是﹣1.
    故选A.
    【考点】相反数.
    2、B
    【解析】
    分析:直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.
    详解:A、不是同类项,无法计算,故此选项错误;
    B、 正确;
    C、 故此选项错误;
    D、 故此选项错误;
    故选:B.
    点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.
    3、B
    【解析】
    根据科学记数法的定义,科学记数法的表示形式为a×10 n ,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,等于这个数的整数位数减1.
    【详解】
    解:85000用科学记数法可表示为8.5×104,
    故选:B.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    4、D
    【解析】
    试题分析:根据图像可得:a<0,b>0,c<0,则A错误;,则B错误;当x=1时,y=0,即a+b+c=0,则C错误;当y=-1时有两个交点,即有两个不相等的实数根,则正确,故选D.
    5、B
    【解析】
    根据一元二次方程必须同时满足三个条件:
    ①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;
    ②只含有一个未知数;
    ③未知数的最高次数是2进行分析即可.
    【详解】
    A. 未知数的最高次数不是2 ,不是一元二次方程,故此选项错误;
    B. 是一元二次方程,故此选项正确;
    C. 未知数的最高次数是3,不是一元二次方程,故此选项错误;
    D. a=0时,不是一元二次方程,故此选项错误;
    故选B.
    【点睛】
    本题考查一元二次方程的定义,解题的关键是明白:
    一元二次方程必须同时满足三个条件:
    ①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;
    ②只含有一个未知数;
    ③未知数的最高次数是2.
    6、C
    【解析】
    科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:将9500000000000km用科学记数法表示为.
    故选C.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    7、D
    【解析】
    解:如图:

    利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k成立的x值恰好有三个.
    故选:D.
    8、D
    【解析】
    由被开方数非负结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围.
    【详解】
    ∵关于x的方程x2-x+1=0有实数根,
    ∴,
    解得:k≥1.
    故选D.
    【点睛】
    本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.
    9、B
    【解析】
    因为CP是∠OCD的平分线,所以∠DCP=∠OCP,所以∠DCP=∠OPC,则CD∥OP,所以弧AP等于弧BP,所以PA=PB.从而可得出答案.
    【详解】
    解:连接OP,

    ∵CP是∠OCD的平分线,
    ∴∠DCP=∠OCP,
    又∵OC=OP,
    ∴∠OCP=∠OPC,
    ∴∠DCP=∠OPC,
    ∴CD∥OP,
    又∵CD⊥AB,
    ∴OP⊥AB,
    ∴,
    ∴PA=PB.
    ∴点P是线段AB垂直平分线和圆的交点,
    ∴当C在⊙O上运动时,点P不动.
    故选:B.
    【点睛】
    本题考查了圆心角、弦、弧之间的关系,以及平行线的判定和性质,在同圆或等圆中,等弧对等弦.
    10、C
    【解析】
    试题分析: 本题考查了勾股定理、展开图折叠成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键.由正方形的性质和勾股定理求出AB的长,即可得出结果.
    解:连接AB,如图所示:
    根据题意得:∠ACB=90°,
    由勾股定理得:AB==;
    故选C.

    考点:1.勾股定理;2.展开图折叠成几何体.
    11、D
    【解析】
    分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.
    【详解】
    解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①.
    故选D.
    12、B
    【解析】
    试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:
    设样本A中的数据为xi,则样本B中的数据为yi=xi+2,
    则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.
    故选B.
    考点:统计量的选择.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    过点A作AD⊥y轴,垂足为D,作BE⊥y轴,垂足为E.先证△ADO∽△OEB,再根据∠OAB=30°求出三角形的相似比,得到OD:OE=2∶,根据平行线分线段成比例得到AC:BC=OD:OE=2∶=
    【详解】
    解:

    如图所示:过点A作AD⊥y轴,垂足为D,作BE⊥y轴,垂足为E.
    ∵∠OAB=30°,∠ADE=90°,∠DEB=90°
    ∴∠DOA+∠BOE=90°,∠OBE+∠BOE=90°
    ∴∠DOA=∠OBE
    ∴△ADO∽△OEB
    ∵∠OAB=30°,∠AOB=90°,
    ∴OA∶OB=
    ∵点A坐标为(3,2)
    ∴AD=3,OD=2
    ∵△ADO∽△OEB

    ∴OE
    ∵OC∥AD∥BE
    根据平行线分线段成比例得:
    AC:BC=OD:OE=2∶=
    故答案为.
    【点睛】
    本题考查三角形相似的证明以及平行线分线段成比例.
    14、<
    【解析】
    先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.
    【详解】
    由二次函数y=x1-4x-1=(x-1)1-5可知,其图象开口向上,且对称轴为x=1,
    ∵1<x1<1,3<x1<4,
    ∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,
    ∴y1<y1.
    故答案为<.
    15、3
    【解析】
    延长AC和BD,交于M点,M、E、F三点共线,EF=MF-ME.
    【详解】

    延长AC和BD,交于M点,M、E、F三点共线,∵∠C+∠D=90°,∴△MCD是直角三角形,∴MF=,同理ME=,∴EF=MF-ME=4-1=3.
    【点睛】
    本题考查了直角三角形斜边中线的性质.
    16、﹣1
    【解析】
    根据根与系数的关系得出b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,求出n>2,再去绝对值符号,即可得出答案.
    【详解】
    解:∵关于x的方程x2−2x+n=1没有实数根,
    ∴b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,
    ∴n>2,
    ∴|2−n |-│1-n│=n-2-n+1=-1.
    故答案为-1.
    【点睛】
    本题考查了根的判别式,解题的关键是根据根与系数的关系求出n的取值范围再去绝对值求解即可.
    17、8.03×106
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.803万=.
    18、-1
    【解析】
    根据“两数相乘,异号得负,并把绝对值相乘”即可求出结论.
    【详解】

    故答案为
    【点睛】
    本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1) ;(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算.
    【解析】
    解:(1)当1≤x≤8时,每平方米的售价应为:
    y=4000﹣(8﹣x)×30="30x+3760" (元/平方米)
    当9≤x≤23时,每平方米的售价应为:
    y=4000+(x﹣8)×50=50x+3600(元/平方米).

    (2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),
    按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),
    按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),
    当W1>W2时,即485760﹣a>475200,
    解得:0<a<10560,
    当W1<W2时,即485760﹣a<475200,
    解得:a>10560,
    ∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.
    【点睛】
    本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.
    20、(1)甲服装的进价为300元、乙服装的进价为1元.(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元.
    【解析】
    (1)若设甲服装的成本为x元,则乙服装的成本为(500-x)元.根据公式:总利润=总售价-总进价,即可列出方程.
    (2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;
    (3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.
    【详解】
    (1)设甲服装的成本为x元,则乙服装的成本为(500-x)元,
    根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x)-500=67,
    解得:x=300,
    500-x=1.
    答:甲服装的成本为300元、乙服装的成本为1元.
    (2)∵乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,
    ∴设每件乙服装进价的平均增长率为y,
    则,
    解得:=0.1=10%,=-2.1(不合题意,舍去).
    答:每件乙服装进价的平均增长率为10%;
    (3)∵每件乙服装进价按平均增长率再次上调
    ∴再次上调价格为:242×(1+10%)=266.2(元)
    ∵商场仍按9折出售,设定价为a元时
    0.9a-266.2>0
    解得:a>
    故定价至少为296元时,乙服装才可获得利润.
    考点:一元二次方程的应用,不等式的应用,打折销售问题
    21、(1)()或(﹣1,﹣1);(1)①2<a<17②b的最小值是
    【解析】
    (1)把x=y=m,a=1,b=1代入函数解析式,列出方程,通过解方程求得m的值即可;
    (1)抛物线上恒有两个不同的“和谐点”A、B.则关于m的方程m=am1+(3b+1)m+b-3的根的判别式△=9b1-4ab+11a.
    ①令y=9b1-4ab+11a,对于任意实数b,均有y>2,所以根据二次函数y=9b1-4ab+11的图象性质解答;
    ②利用二次函数图象的对称性质解答即可.
    【详解】
    (1)当a=1,b=1时,m=1m1+4m+1﹣4,
    解得m=或m=﹣1.
    所以点P的坐标是(,)或(﹣1,﹣1);
    (1)m=am1+(3b+1)m+b﹣3,
    △=9b1﹣4ab+11a.
    ①令y=9b1﹣4ab+11a,对于任意实数b,均有y>2,也就是说抛物线y=9b1﹣4ab+11的图象都在b轴(横轴)上方.
    ∴△=(﹣4a)1﹣4×9×11a<2.
    ∴2<a<17.
    ②由“和谐点”定义可设A(x1,y1),B(x1,y1),
    则x1,x1是ax1+(3b+1)x+b﹣3=2的两不等实根,.
    ∴线段AB的中点坐标是:(﹣,﹣).代入对称轴y=x﹣(+1),得
    ﹣=﹣(+1),
    ∴3b+1=+a.
    ∵a>2,>2,a•=1为定值,
    ∴3b+1=+a≥1=1,
    ∴b≥.
    ∴b的最小值是.
    【点睛】
    此题考查了二次函数综合题,其中涉及到了二次函数图象上点的坐标特征,抛物线与x轴的交点,一元二次方程与二次函数解析式间的关系,二次函数图象的性质等知识点,难度较大,解题时,掌握“和谐点”的定义是解题的难点.
    22、(1)5;(2)1或﹣1.
    【解析】
    (1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;
    (2)由原式=(a-b)2+2(a+b)可得(a-b)2+2×4=17,据此进一步计算可得.
    【详解】
    (1)原式=ab+a+b+1﹣ab=a+b+1,
    当a+b=4时,原式=4+1=5;
    (2)∵a2﹣2ab+b2+2a+2b=(a﹣b)2+2(a+b),
    ∴(a﹣b)2+2×4=17,
    ∴(a﹣b)2=9,
    则a﹣b=1或﹣1.
    【点睛】
    本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的运算法则及整体思想的运用.
    23、(1)P=;(2)P=.
    【解析】
    试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.
    试题解析:(1)甲、乙两名学生到A、B两个书店购书的所有可能结果有:

    从树状图可以看出,这两名学生到不同书店购书的可能结果有AB、BA共2种,
    所以甲乙两名学生在不同书店购书的概率P(甲、乙2名学生在不同书店购书)=;
    (2)甲、乙、丙三名学生AB两个书店购书的所有可能结果有:

    从树状图可以看出,这三名学生到同一书店购书的可能结果有AAA、BBB共2种,
    所以甲乙丙到同一书店购书的概率P(甲、乙、丙3名学生在同一书店购书)=.
    点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    24、(1)见详解;(2)4+或4+.
    【解析】
    (1)根据关于x的方程x2-(m+2)x+(2m-1)=0的根的判别式的符号来证明结论.
    (2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:①当该直角三角形的两直角边是2、3时,②当该直角三角形的直角边和斜边分别是2、3时,由勾股定理求出得该直角三角形的另一边,再根据三角形的周长公式进行计算.
    【详解】
    解:(1)证明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,
    ∴在实数范围内,m无论取何值,(m-2)2+4≥4>0,即△>0.
    ∴关于x的方程x2-(m+2)x+(2m-1)=0恒有两个不相等的实数根.
    (2)∵此方程的一个根是1,
    ∴12-1×(m+2)+(2m-1)=0,解得,m=2,
    则方程的另一根为:m+2-1=2+1=3.
    ①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为,该直角三角形的周长为1+3+=4+.
    ②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为;则该直角三角形的周长为1+3+=4+.
    25、(1)购进甲种纪念品每件需100元,购进乙种纪念品每件需50元.(2)有三种进货方案.方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件.(3)若全部销售完,方案一获利最大,最大利润是1800元.
    【解析】
    分析:(1)设购进甲种纪念品每件价格为x元,乙种纪念币每件价格为y元,根据题意得出关于x和y的二元一次方程组,解方程组即可得出结论;
    (2)设购进甲种纪念品a件,根据题意列出关于x的一元一次不等式,解不等式得出a的取值范围,即可得出结论;
    (3)找出总利润关于购买甲种纪念品a件的函数关系式,由函数的增减性确定总利润取最值时a的值,从而得出结论.
    详解:(1)设购进甲种纪念品每件需x元,购进乙种纪念品每件需y元.
    由题意得:,
    解得:
    答:购进甲种纪念品每件需100元,购进乙种纪念品每件需50元.
    (2)设购进甲种纪念品a(a≥60)件,则购进乙种纪念品(80﹣a)件.由题意得:
    100a+50(80﹣a)≤7100
    解得a≤1
    又a≥60
    所以a可取60、61、1.
    即有三种进货方案.
    方案一:甲种纪念品60件,乙种纪念品20件;
    方案二:甲种纪念品61件,乙种纪念品19件;
    方案三:甲种纪念品1件,乙种纪念品18件.
    (3)设利润为W,则W=20a+30(80﹣a)=﹣10a+2400
    所以W是a的一次函数,﹣10<0,W随a的增大而减小.
    所以当a最小时,W最大.此时W=﹣10×60+2400=1800
    答:若全部销售完,方案一获利最大,最大利润是1800元.
    点睛:本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,找到相应的数量关系是解决问题的关键,注意第二问应求整数解,要求学生能够运用所学知识解决实际问题.
    26、 (1)200;(2)72°,作图见解析;(3).
    【解析】
    (1)用一等奖的人数除以所占的百分比求出总人数;
    (2)用总人数乘以二等奖的人数所占的百分比求出二等奖的人数,补全统计图,再用360°乘以二等奖的人数所占的百分比即可求出“二等奖”对应的扇形圆心角度数;
    (3)用获得一等奖和二等奖的人数除以总人数即可得出答案.
    【详解】
    解:(1)这次知识竞赛共有学生=200(名);
    (2)二等奖的人数是:200×(1﹣10%﹣24%﹣46%)=40(人),
    补图如下:

    “二等奖”对应的扇形圆心角度数是:360°×=72°;
    (3)小华获得“一等奖或二等奖”的概率是: =.
    【点睛】
    本题主要考查了条形统计图以及扇形统计图,利用统计图获取信息是解本题的关键.
    27、(1)a=,b=2;(2)BC=.
    【解析】
    试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;
    (2)设A点的坐标为:(m,),则C点的坐标为:(m,0),得出tan∠ADF=,tan∠AEC=,进而求出m的值,即可得出答案.
    试题解析:(1)∵点B(2,2)在函数y=(x>0)的图象上,
    ∴k=4,则y=,
    ∵BD⊥y轴,∴D点的坐标为:(0,2),OD=2,
    ∵AC⊥x轴,AC=OD,∴AC=3,即A点的纵坐标为:3,
    ∵点A在y=的图象上,∴A点的坐标为:(,3),
    ∵一次函数y=ax+b的图象经过点A、D,
    ∴,
    解得:,b=2;
    (2)设A点的坐标为:(m,),则C点的坐标为:(m,0),
    ∵BD∥CE,且BC∥DE,
    ∴四边形BCED为平行四边形,
    ∴CE=BD=2,
    ∵BD∥CE,∴∠ADF=∠AEC,
    ∴在Rt△AFD中,tan∠ADF=,
    在Rt△ACE中,tan∠AEC=,
    ∴=,
    解得:m=1,
    ∴C点的坐标为:(1,0),则BC=.
    考点:反比例函数与一次函数的交点问题.

    相关试卷

    江苏省淮安市金湖县达标名校2022年中考数学模拟预测试卷含解析: 这是一份江苏省淮安市金湖县达标名校2022年中考数学模拟预测试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,的倒数是,下列运算正确的是等内容,欢迎下载使用。

    2022届江苏省洪泽区金湖县中考押题数学预测卷含解析: 这是一份2022届江苏省洪泽区金湖县中考押题数学预测卷含解析,共17页。

    2021-2022学年江苏省洪泽区金湖县中考数学模拟预测试卷含解析: 这是一份2021-2022学年江苏省洪泽区金湖县中考数学模拟预测试卷含解析,共17页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map