年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省江都区国际校2021-2022学年中考数学模拟试题含解析

    江苏省江都区国际校2021-2022学年中考数学模拟试题含解析第1页
    江苏省江都区国际校2021-2022学年中考数学模拟试题含解析第2页
    江苏省江都区国际校2021-2022学年中考数学模拟试题含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省江都区国际校2021-2022学年中考数学模拟试题含解析

    展开

    这是一份江苏省江都区国际校2021-2022学年中考数学模拟试题含解析,共18页。试卷主要包含了计算3a2-a2的结果是,下列运算正确的是,如图所示的几何体,它的左视图是,的算术平方根为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列实数中,为无理数的是(  )
    A. B. C.﹣5 D.0.3156
    2.计算-5x2-3x2的结果是( )
    A.2x2 B.3x2 C.-8x2 D.8x2
    3.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是(  )

    A.8 B.10 C.21 D.22
    4. “单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.右图描述了某次单词复习中四位同学的单词记忆效率与复习的单词个数的情况,则这四位同学在这次单词复习中正确默写出的单词个数最多的是( )

    A. B. C. D.
    5.计算3a2-a2的结果是(  )
    A.4a2 B.3a2 C.2a2 D.3
    6.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:
    ①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.
    你认为其中正确信息的个数有

    A.2个 B.3个 C.4个 D.5个
    7.下列运算正确的是(   )
    A.a2·a3﹦a6  B.a3+ a3﹦a6  C.|-a2|﹦a2    D.(-a2)3﹦a6
    8.如图所示的几何体,它的左视图是(  )

    A. B. C. D.
    9.的算术平方根为( )
    A. B. C. D.
    10.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是(  )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,sin∠C,长度为2的线段ED在射线CF上滑动,点B在射线CA上,且BC=5,则△BDE周长的最小值为______.

    12.如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°方向航行,半小时后甲船到达点C,乙船正好到达甲船正西方向的点B,则乙船的航程为______海里(结果保留根号).

    13.直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA的公共点,正确的有_____(只填写序号).

    14.若关于x的分式方程的解为非负数,则a的取值范围是_____.
    15.若反比例函数y=﹣的图象经过点A(m,3),则m的值是_____.
    16.七巧板是我们祖先的一项创造,被誉为“东方魔板”,如图所示是一副七巧板,若已知S△BIC=1,据七巧板制作过程的认识,求出平行四边形EFGH_____.

    17.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_____.
    三、解答题(共7小题,满分69分)
    18.(10分)在某校举办的 2012 年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品 200 个以上可以按折扣价出售;购买 200 个以下(包括 200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要 1050 元;若多买 35 个,则按折扣价付款,恰好共需 1050 元.设小王按原计划购买纪念品 x 个.
    (1)求 x 的范围;
    (2)如果按原价购买 5 个纪念品与按打折价购买 6 个纪念品的钱数相同,那么小王原计划购买多少个纪念品?
    19.(5分)如图,直线与双曲线相交于、两点.
    (1) ,点坐标为 .
    (2)在轴上找一点,在轴上找一点,使的值最小,求出点两点坐标

    20.(8分)已知:如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.
    求:(1)求∠CDB的度数;
    (2)当AD=2时,求对角线BD的长和梯形ABCD的面积.

    21.(10分)如图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.
    以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.
    22.(10分)在平面直角坐标系中,已知直线y=﹣x+4和点M(3,2)
    (1)判断点M是否在直线y=﹣x+4上,并说明理由;
    (2)将直线y=﹣x+4沿y轴平移,当它经过M关于坐标轴的对称点时,求平移的距离;
    (3)另一条直线y=kx+b经过点M且与直线y=﹣x+4交点的横坐标为n,当y=kx+b随x的增大而增大时,则n取值范围是_____.

    23.(12分)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.

    平均分(分)
    中位数(分)
    众数(分)
    方差(分2)
    初中部
    a
    85
    b
    s初中2
    高中部
    85
    c
    100
    160
    (1)根据图示计算出a、b、c的值;结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.

    24.(14分)珠海某企业接到加工“无人船”某零件5000个的任务.在加工完500个后,改进了技术,每天加工的零件数量是原来的1.5倍,整个加工过程共用了35天完成.求技术改进后每天加工零件的数量.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    根据无理数的定义解答即可.
    【详解】
    选项A、是分数,是有理数;
    选项B、是无理数;
    选项C、﹣5为有理数;
    选项D、0.3156是有理数;
    故选B.
    【点睛】
    本题考查了无理数的判定,熟知无理数是无限不循环小数是解决问题的关键.
    2、C
    【解析】
    利用合并同类项法则直接合并得出即可.
    【详解】
    解:
    故选C.
    【点睛】
    此题主要考查了合并同类项,熟练应用合并同类项法则是解题关键.
    3、D
    【解析】
    分析:根据条形统计图得到各数据的权,然后根据中位数的定义求解.
    详解:一共30个数据,第15个数和第16个数都是22,所以中位数是22.
    故选D.
    点睛:考查中位数的定义,看懂条形统计图是解题的关键.
    4、C
    【解析】
    分析:在四位同学中,M同学单词记忆效率最高,但是复习的单词最少,T同学复习的单词最多,但是他的单词记忆效率最低,N,S两位同学的单词记忆效率基本相同,但是S同学复习的单词最多,这四位同学在这次单词复习中正确默写出的单词个数最多的应该是S.
    详解:在四位同学中,M同学单词记忆效率最高,但是复习的单词最少,T同学复习的单词最多,但是他的单词记忆效率最低,N,S两位同学的单词记忆效率基本相同,但是S同学复习的单词最多,这四位同学在这次单词复习中正确默写出的单词个数最多的应该是S.
    故选C.
    点睛:考查函数的图象,正确理解题目的意思是解题的关键.
    5、C
    【解析】
    【分析】根据合并同类项法则进行计算即可得.
    【详解】3a2-a2
    =(3-1)a2
    =2a2,
    故选C.
    【点睛】本题考查了合并同类项,熟记合并同类项的法则是解题的关键.合并同类项就是把同类项的系数相加减,字母和字母的指数不变.
    6、D
    【解析】
    试题分析:①如图,∵抛物线开口方向向下,∴a<1.
    ∵对称轴x,∴<1.∴ab>1.故①正确.
    ②如图,当x=1时,y<1,即a+b+c<1.故②正确.
    ③如图,当x=﹣1时,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正确.
    ④如图,当x=﹣1时,y>1,即a﹣b+c>1,
    ∵抛物线与y轴交于正半轴,∴c>1.
    ∵b<1,∴c﹣b>1.
    ∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正确.
    ⑤如图,对称轴,则.故⑤正确.
    综上所述,正确的结论是①②③④⑤,共5个.故选D.
    7、C
    【解析】
    根据同底数幂相乘,底数不变指数相加;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.
    【详解】
    a2·a3﹦a5,故A项错误;a3+ a3﹦2a3,故B项错误;a3+ a3﹦- a6,故D项错误,选C.
    【点睛】
    本题考查同底数幂加减乘除及乘方,解题的关键是清楚运算法则.
    8、D
    【解析】
    分析:根据从左边看得到的图形是左视图,可得答案.
    详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,
    故选D.
    点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.
    9、B
    【解析】
    分析:先求得的值,再继续求所求数的算术平方根即可.
    详解:∵=2,
    而2的算术平方根是,
    ∴的算术平方根是,
    故选B.
    点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.
    10、C
    【解析】
    分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.
    详解:从左边看竖直叠放2个正方形.
    故选:C.
    点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.

    二、填空题(共7小题,每小题3分,满分21分)
    11、.
    【解析】
    作BK∥CF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D',则,此时△BD'E'的周长最小,作交CF于点F,
    可知四边形为平行四边形及四边形为矩形,在中,解直角三角形可知BH长,易得GK长,在Rt△BGK中,可得BG长,表示出△BD'E'的周长等量代换可得其值.
    【详解】
    解:如图,作BK∥CF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D',则,此时△BD'E'的周长最小,作交CF于点F.

    由作图知,四边形为平行四边形,

    由对称可知


    ,即
    四边形为矩形

    在中,



    在Rt△BGK中, BK=2,GK=6,
    ∴BG2,
    ∴△BDE周长的最小值为BE'+D'E'+BD'=KD'+D'E'+BD'=D'E'+BD'+GD'=D'E'+BG=2+2.
    故答案为:2+2.
    【点睛】
    本题考查了最短距离问题,涉及了轴对称、矩形及平行四边形的性质、解直角三角形、勾股定理,难度系数较大,利用两点之间线段最短及轴对称添加辅助线是解题的关键.
    12、10海里.
    【解析】
    本题可以求出甲船行进的距离AC,根据三角函数就可以求出AB,即可求出乙船的路程.
    【详解】
    由已知可得:AC=60×0.5=30海里,
    又∵甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°,
    ∴∠BAC=90°,
    又∵乙船正好到达甲船正西方向的B点,
    ∴∠C=30°,
    ∴AB=AC•tan30°=30×=10海里.
    答:乙船的路程为10海里.
    故答案为10海里.
    【点睛】
    本题主要考查的是解直角三角形的应用-方向角问题及三角函数的定义,理解方向角的定义是解决本题的关键.
    13、③
    【解析】
    根据直线与点的位置关系即可求解.
    【详解】
    ①点A在直线BC上是错误的;
    ②直线AB经过点C是错误的;
    ③直线AB,BC,CA两两相交是正确的;
    ④点B是直线AB,BC,CA的公共点是错误的.
    故答案为③.
    【点睛】
    本题考查了直线、射线、线段,关键是熟练掌握直线、射线、线段的定义.
    14、且
    【解析】
    分式方程去分母得:2(2x-a)=x-2,
    去括号移项合并得:3x=2a-2,
    解得:,
    ∵分式方程的解为非负数,
    ∴ 且 ,
    解得:a≥1 且a≠4 .
    15、﹣2
    【解析】
    ∵反比例函数的图象过点A(m,3),
    ∴,解得.
    16、1
    【解析】
    根据七巧板的性质可得BI=IC=CH=HE,因为S△BIC=1,∠BIC=90°,可求得BI=IC=,BC=1,在求得点G到EF的距离为 sin45°,根据平行四边形的面积即可求解.
    【详解】
    由七巧板性质可知,BI=IC=CH=HE.
    又∵S△BIC=1,∠BIC=90°,
    ∴BI•IC=1,
    ∴BI=IC=,
    ∴BC==1,
    ∵EF=BC=1,FG=EH=BI=,
    ∴点G到EF的距离为:,
    ∴平行四边形EFGH的面积=EF•
    =1×=1.
    故答案为1
    【点睛】
    本题考查了七巧板的性质、等腰直角三角形的性质及平行四边形的面积公式,熟知七巧板的性质是解决问题的关键.
    17、(y﹣1)1(x﹣1)1.
    【解析】
    解:令x+y=a,xy=b,
    则(xy﹣1)1﹣(x+y﹣1xy)(1﹣x﹣y)
    =(b﹣1)1﹣(a﹣1b)(1﹣a)
    =b1﹣1b+1+a1﹣1a﹣1ab+4b
    =(a1﹣1ab+b1)+1b﹣1a+1
    =(b﹣a)1+1(b﹣a)+1
    =(b﹣a+1)1;
    即原式=(xy﹣x﹣y+1)1=[x(y﹣1)﹣(y﹣1)]1=[(y﹣1)(x﹣1)]1=(y﹣1)1(x﹣1)1.
    故答案为(y﹣1)1(x﹣1)1.
    点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).
    (1)公式法:完全平方公式,平方差公式.
    (3)十字相乘法.
    因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.

    三、解答题(共7小题,满分69分)
    18、(1)0<x≤200,且 x是整数(2)175
    【解析】
    (1)根据商场的规定确定出x的范围即可;
    (2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.
    【详解】
    (1)根据题意得:0<x≤200,且x为整数;
    (2)设小王原计划购买x个纪念品,
    根据题意得:,
    整理得:5x+175=6x,
    解得:x=175,
    经检验x=175是分式方程的解,且满足题意,
    则小王原计划购买175个纪念品.
    【点睛】
    此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.
    19、 (1),;(1),.
    【解析】
    (1)由点A在一次函数图象上,将A(-1,a)代入y=x+4,求出a的值,得到点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;
    (1)作点A关于y轴的对称点A′,作点B作关于x轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,连接PB、QA.利用待定系数法求出直线A′B′的解析式,进而求出P、Q两点坐标.
    【详解】
    解:(1)把点A(-1,a)代入一次函数y=x+4,
    得:a=-1+4,解得:a=3,
    ∴点A的坐标为(-1,3).
    把点A(-1,3)代入反比例函数y=,
    得:k=-3,
    ∴反比例函数的表达式y=-.
    联立两个函数关系式成方程组得:
    解得: 或
    ∴点B的坐标为(-3,1).
    故答案为3,(-3,1);
    (1)作点A关于y轴的对称点A′,作点B作关于x轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,连接PB、QA,如图所示.

    ∵点B、B′关于x轴对称,点B的坐标为(-3,1),
    ∴点B′的坐标为(-3,-1),PB=PB′,
    ∵点A、A′关于y轴对称,点A的坐标为(-1,3),
    ∴点A′的坐标为(1,3),QA=QA′,
    ∴BP+PQ+QA=B′P+PQ+QA′=A′B′,值最小.
    设直线A′B′的解析式为y=mx+n,
    把A′,B′两点代入得:
    解得:
    ∴直线A′B′的解析式为y=x+1.
    令y=0,则x+1=0,解得:x=-1,点P的坐标为(-1,0),
    令x=0,则y=1,点Q的坐标为(0,1).
    【点睛】
    本题考查反比例函数与一次函数的交点问题、待定系数法求函数解析式、轴对称中的最短线路问题,解题的关键是:(1)联立两函数解析式成方程组,解方程组求出交点坐标;(1)根据轴对称的性质找出点P、Q的位置.本题属于基础题,难度适中,解决该题型题目时,联立解析式成方程组,解方程组求出交点坐标是关键.
    20、:(1) 30º;(2).
    【解析】
    分析:
    (1)由已知条件易得∠ABC=∠A=60°,结合BD平分∠ABC和CD∥AB即可求得∠CDB=30°;
    (2)过点D作DH⊥AB于点H,则∠AHD=30°,由(1)可知∠BDA=∠DBC=30°,结合∠A=60°可得∠ADB=90°,∠ADH=30°,DC=BC=AD=2,由此可得AB=2AD=4,AH=,这样即可由梯形的面积公式求出梯形ABCD的面积了.
    详解:
    (1) ∵在梯形ABCD中,DC∥AB,AD=BC,∠A=60°,
    ∴∠CBA=∠A=60º,
    ∵BD平分∠ABC,
    ∴∠CDB=∠ABD=∠CBA=30º,
    (2)在△ACD中,∵∠ADB=180º–∠A–∠ABD=90º.
    ∴BD=AD A=2tan60º=2.
    过点D作DH⊥AB,垂足为H,
    ∴AH=ADA=2sin60º=.
    ∵∠CDB=∠CBD=∠CBD=30º,
    ∴DC=BC=AD=2
    ∵AB=2AD=4
    ∴.

    点睛:本题是一道应用等腰梯形的性质求解的题,熟悉等腰梯形的性质和直角三角形中30°的角所对直角边是斜边的一半及等腰三角形的判定,是正确解答本题的关键.
    21、(1)作图见解析;(2)作图见解析;5π(平方单位).
    【解析】
    (1)连接AO、BO、CO并延长到2AO、2BO、2CO长度找到各点的对应点,顺次连接即可.
    (2)△A′B′C′的A′、C′绕点B′顺时针旋转90°得到对应点,顺次连接即可.A′B′在旋转过程中扫过的图形面积是一个扇形,根据扇形的面积公式计算即可.
    【详解】
    解:(1)见图中△A′B′C′

    (2)见图中△A″B′C″
    扇形的面积(平方单位).
    【点睛】
    本题主要考查了位似图形及旋转变换作图的方法及扇形的面积公式.
    22、(1)点M(1,2)不在直线y=﹣x+4上,理由见解析;(2)平移的距离为1或2;(1)2<n<1.
    【解析】
    (1)将x=1代入y=-x+4,求出y=-1+4=1≠2,即可判断点M(1,2)不在直线y=-x+4上;
    (2)设直线y=-x+4沿y轴平移后的解析式为y=-x+4+b.分两种情况进行讨论:①点M(1,2)关于x轴的对称点为点M1(1,-2);②点M(1,2)关于y轴的对称点为点M2(-1,2).分别求出b的值,得到平移的距离;
    (1)由直线y=kx+b经过点M(1,2),得到b=2-1k.由直线y=kx+b与直线y=-x+4交点的横坐标为n,得出y=kn+b=-n+4,k=.根据y=kx+b随x的增大而增大,得到k>0,即>0,那么①,或②,分别解不等式组即可求出n的取值范围.
    【详解】
    (1)点M不在直线y=﹣x+4上,理由如下:
    ∵当x=1时,y=﹣1+4=1≠2,
    ∴点M(1,2)不在直线y=﹣x+4上;
    (2)设直线y=﹣x+4沿y轴平移后的解析式为y=﹣x+4+b.
    ①点M(1,2)关于x轴的对称点为点M1(1,﹣2),
    ∵点M1(1,﹣2)在直线y=﹣x+4+b上,
    ∴﹣2=﹣1+4+b,
    ∴b=﹣1,
    即平移的距离为1;
    ②点M(1,2)关于y轴的对称点为点M2(﹣1,2),
    ∵点M2(﹣1,2)在直线y=﹣x+4+b上,
    ∴2=1+4+b,
    ∴b=﹣2,
    即平移的距离为2.
    综上所述,平移的距离为1或2;
    (1)∵直线y=kx+b经过点M(1,2),
    ∴2=1k+b,b=2﹣1k.
    ∵直线y=kx+b与直线y=﹣x+4交点的横坐标为n,
    ∴y=kn+b=﹣n+4,
    ∴kn+2﹣1k=﹣n+4,
    ∴k=.
    ∵y=kx+b随x的增大而增大,
    ∴k>0,即>0,
    ∴①,或②,
    不等式组①无解,不等式组②的解集为2<n<1.
    ∴n的取值范围是2<n<1.
    故答案为2<n<1.
    【点睛】
    本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,一次函数的性质,解一元一次不等式组,都是基础知识,需熟练掌握.
    23、(1)85,85,80; (2)初中部决赛成绩较好;(3)初中代表队选手成绩比较稳定.
    【解析】
    分析:(1)根据成绩表,结合平均数、众数、中位数的计算方法进行解答;
    (2)比较初中部、高中部的平均数和中位数,结合比较结果得出结论;
    (3)利用方差的计算公式,求出初中部的方差,结合方差的意义判断哪个代表队选手的成绩较为稳定.
    【详解】
    详解: (1)初中5名选手的平均分,众数b=85,
    高中5名选手的成绩是:70,75,80,100,100,故中位数c=80;
    (2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,
    故初中部决赛成绩较好;
    (3)=70,
    ∵,
    ∴初中代表队选手成绩比较稳定.
    【点睛】
    本题是一道有关条形统计图、平均数、众数、中位数、方差的统计类题目,掌握平均数、众数、中位数、方差的概念及计算方法是解题的关键.
    24、技术改进后每天加工1个零件.
    【解析】
    分析:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意列出分式方程,从而得出方程的解并进行检验得出答案.
    详解:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,
    根据题意可得, 解得x=100,
    经检验x=100是原方程的解,则改进后每天加工1.
    答:技术改进后每天加工1个零件.
    点睛:本题主要考查的是分式方程的应用,属于基础题型.根据题意得出等量关系是解题的关键,最后我们还必须要对方程的解进行检验.

    相关试卷

    江苏省扬州市江都区国际校2021-2022学年中考数学最后冲刺模拟试卷含解析:

    这是一份江苏省扬州市江都区国际校2021-2022学年中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了一、单选题,下列运算正确的是等内容,欢迎下载使用。

    江苏省江都区六校2021-2022学年十校联考最后数学试题含解析:

    这是一份江苏省江都区六校2021-2022学年十校联考最后数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,一、单选题,tan60°的值是等内容,欢迎下载使用。

    2022年江苏省扬州市江都区国际校中考三模数学试题含解析:

    这是一份2022年江苏省扬州市江都区国际校中考三模数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列4个数等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map